cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A274558 Numbers k such that sigma(k) == 0 (mod k-6).

Original entry on oeis.org

5, 7, 13, 14, 20, 30, 45, 76, 630, 688, 2310, 8896, 133888, 537051136, 1631268870, 35184418226176, 144115191028645888, 2305843021024854016
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Comments

Contains terms of A141549, odd terms of A141548 multiplied by 2, and 6 times terms of A191363 coprime to 6. - Max Alekseyev, May 25 2025

Examples

			sigma(7) mod (7-6) = 8 mod 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[7, 10^6],  # - 6 != 0 && Mod[DivisorSigma[1, #], # - 6] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(14)-a(15) from Giovanni Resta
Term 5 inserted, a(16)-a(18) added by Max Alekseyev, Jun 04 2025

A274560 Numbers k such that sigma(k) == 0 (mod k-7).

Original entry on oeis.org

3, 5, 6, 8, 10, 11, 15, 27, 34, 72, 232, 34432, 549762629632
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(8) mod (8-7) = 15 mod 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6], Mod[DivisorSigma[1, #], # - 7] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(13) from Giovanni Resta
Terms 3,5,6 inserted by Max Alekseyev, May 29 2025

A274561 Numbers k such that sigma(k) == 0 (mod k+8).

Original entry on oeis.org

10, 49, 240, 550, 748, 1504, 3192, 7192, 7912, 10792, 17272, 30592, 979992, 1713592, 4526272, 8353792, 9928792, 11547352, 17999992, 89283592, 173482552, 361702144, 1081850752, 1845991216, 2146926592, 11097907192, 12985220152, 21818579968, 34357510144, 109170719992, 228354264064, 279632332792, 549746900992, 1511712719992, 2169800814592
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(10) mod (10 + 8) = 18 mod 18 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Mod[DivisorSigma[1, #], # + 8] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(16)-a(35) from Giovanni Resta

A274563 Numbers k such that sigma(k) == 0 (mod k+9).

Original entry on oeis.org

15, 208, 6976, 8415, 31815, 351351, 2077696, 20487159, 159030135, 536559616, 2586415095, 137433972736, 2199003332608
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Examples

			sigma(15) mod (15 + 9) = 24 mod 24 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Mod[DivisorSigma[1, #], # + 9] == 0 &] (* Michael De Vlieger, Jul 06 2016 *)

Extensions

a(7)-a(13) from Giovanni Resta, Jul 06 2016

A274564 Numbers k such that sigma(k) == 0 (mod k-9).

Original entry on oeis.org

6, 7, 8, 10, 11, 15, 19, 24, 33, 105, 33705, 33624064, 2199041081344
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Examples

			sigma(10) mod (10 - 9) = 18 mod 1 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [10..2*10^6] | SumOfDivisors(n) mod (n-9) eq 0 ]; // Vincenzo Librandi, Jul 06 2016
    
  • Mathematica
    k = -9; Select[Range[Abs@k+1, 10^6], Mod[DivisorSigma[1, #], # + k] == 0 &] (* Vincenzo Librandi, Jul 06 2016 *)
  • PARI
    isok(k) = (k!=9) && (Mod(sigma(k), k-9) == 0); \\ Michel Marcus, May 30 2025

Extensions

a(12)-a(13) from Giovanni Resta, Jul 06 2016
Terms 6,7,8 inserted by Max Alekseyev, May 29 2025

A088834 Numbers k such that sigma(k) == 6 (mod k).

Original entry on oeis.org

1, 5, 6, 25, 180, 8925, 32445, 442365
Offset: 1

Views

Author

Labos Elemer, Oct 29 2003

Keywords

Comments

For each integer j in A059609, 2^(j-1)*(2^j - 7) is in the sequence. E.g., for j = A059609(1) = 39 we get 151115727449904501489664. - M. F. Hasler and Farideh Firoozbakht, Dec 03 2013
No more terms to 10^10. - Charles R Greathouse IV, Dec 05 2013
a(9) > 10^13. - Giovanni Resta, Apr 02 2014
a(9) > 1.5*10^14. - Jud McCranie, Jun 02 2019
No more terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			Sigma(25) = 31 = 1*25 + 6, so 31 mod 25 = 6.
		

Crossrefs

Cf. A087167 (a subsequence).
Cf. A059609.

Programs

  • Mathematica
    Select[Range[1000000], Mod[DivisorSigma[1, #] - 6, #] == 0 &] (* T. D. Noe, Dec 03 2013 *)
  • PARI
    isok(n) = Mod(sigma(n), n) == 6; \\ Michel Marcus, Jan 03 2023

Extensions

Terms corrected by Charles R Greathouse IV and Farideh Firoozbakht, Dec 03 2013

A274559 Numbers k such that sigma(k) == 0 (mod k+7).

Original entry on oeis.org

8, 272, 7232, 30848, 516608, 134094848, 2146992128, 35184309174272
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(8) mod (8+7) = 15 mod 15 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Mod[DivisorSigma[1, #], # + 7] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(6)-a(7) from Giovanni Resta, Jul 05 2016
a(8) from Max Alekseyev, May 29 2025

A274565 Numbers k such that sigma(k) == 0 (mod k+10).

Original entry on oeis.org

14, 176, 1376, 3230, 3770, 6848, 114256, 125696, 544310, 561824, 740870, 2075648, 4199030, 4607296, 8436950, 33468416, 134045696, 199272950, 624032630, 1113445430, 1550860550, 85905593344, 2199001235456, 35184284008448
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Examples

			sigma(14) mod (14 + 10) = 24 mod 24 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | SumOfDivisors(n) mod (n+10) eq 0 ]; // Vincenzo Librandi, Jul 06 2016
  • Mathematica
    k = 10; Select[Range[Abs@k+1, 10^6], Mod[DivisorSigma[1, #], # + k] == 0 &] (* Vincenzo Librandi, Jul 06 2016 *)

Extensions

a(13)-a(23) from Giovanni Resta, Jul 06 2016
a(24) from Max Alekseyev, May 29 2025

A117346 Near-multiperfects: numbers m such that abs(sigma(m) mod m) <= log(m).

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 16, 17, 19, 20, 23, 28, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 64, 67, 70, 71, 73, 79, 83, 88, 89, 97, 101, 103, 104, 107, 109, 110, 113, 120, 127, 128, 131, 136, 137, 139, 149, 151, 152, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
Offset: 1

Views

Author

Walter Nissen, Mar 09 2006

Keywords

Comments

Sequences A117346 through A117350 are an attempt to improve on sequences A045768 through A045770, A077374, A087167, A087485 and A088007 through A088012 and related sequences (but not to replace them) by using a more significant definition of "near." E.g., is sigma(n) really "near" a multiple of n, for n=9? Or n=18? Sigma is the sum_of_divisors function.

Examples

			70 is in the sequence because sigma(70) = 144 = 2*70 + 4, while 4 < log(70) ~= 4.248.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.

Crossrefs

Cf. A045768 through A045770, A077374, A087167, A087485, A088007 through A088012, A117347 through A117350.

Programs

  • Mathematica
    asmlQ[n_]:=Module[{p=Mod[DivisorSigma[1,n],n]},If[p>n/2,p=n-p];p<=Log[n]];
    Select[Range[200],asmlQ] (* Harvey P. Dale, Dec 25 2013 *)

Extensions

First term prepended by Harvey P. Dale, Dec 25 2013

A117349 Near-multiperfects with primes, powers of 2 and 6 * prime excluded, abs(sigma(n) mod n) <= log(n).

Original entry on oeis.org

6, 10, 20, 28, 70, 88, 104, 110, 120, 136, 152, 464, 496, 592, 650, 672, 884, 1155, 1888, 1952, 2144, 4030, 5830, 8128, 8384, 8925, 11096, 17816, 18632, 18904, 30240, 32128, 32445, 32760, 32896, 33664, 45356, 70564, 77744, 85936, 91388, 100804, 116624
Offset: 1

Views

Author

Walter Nissen, Mar 09 2006

Keywords

Comments

Sequences A117346 through A117350 are an attempt to improve on sequences A045768 through A045770, A077374, A087167, A087485 and A088007 through A088012 and related sequences (but not to replace them) by using a more significant definition of "near." E.g., is sigma(n) really "near" a multiple of n, for n=9? Or n=18? Log is the natural logarithm. Sigma is the sum_of_divisors function.

Examples

			70 is a term because sigma(70) = 144 = 2*70 + 4, while 4 < log(70) ~= 4.248.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.

Crossrefs

Formula

sigma(n) = k*n + r, abs(r) <= log(n).

Extensions

Offset corrected by Donovan Johnson, Oct 01 2012
Previous Showing 11-20 of 26 results. Next