A113631 Number of distinct representations of (2n)^2 as the sum of two primes.
0, 1, 2, 4, 5, 6, 11, 9, 8, 20, 14, 14, 26, 17, 18, 48, 22, 22, 49, 28, 36, 69, 33, 37, 68, 47, 43, 83, 49, 47, 125, 50, 53, 118, 56, 94, 126, 63, 63, 153, 98, 71, 186, 79, 94, 230, 89, 91, 197, 127, 127, 215, 112, 105, 220, 172, 147
Offset: 0
Examples
a(1) = 1 because (2*1)^2 = 4 = 2 + 2 uniquely. a(2) = 2 because (2*2)^2 = 16 = 3 + 13 = 5 + 11. a(3) = 4 because (2*3)^2 = 36 = 5 + 31 = 7 + 29 = 13 + 23 = 17 + 19. a(4) = 5 because (2*4)^2 = 64 = 3 + 61 = 5 + 59 = 11 + 53 = 17 + 47 = 23 + 41. a(5) = 6 because (2*5)^2 = 100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53. a(6) = 11 because (2*6)^2 = 144 = 5 + 139 = 7 + 137 = 13 + 131 = 17 + 127 = 31 + 113 = 37 + 107 = 41 + 103 = 43 + 101 = 47 + 97 = 61 + 83 = 71 + 73.
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- H. Halberstam and H. E. Richert, 1974, "Sieve methods", Academic press, London, New York, San Francisco.
Links
- Marius A. Burtea, Table of n, a(n) for n = 0..500
Programs
-
Magma
[#RestrictedPartitions(4*n^2,2,{p:p in PrimesUpTo(20000)}):n in [0..56] ] // Marius A. Burtea, Jan 19 2019
-
Maple
g:=sum(sum(x^(ithprime(i)+ithprime(j)),i=1..j),j=1..1500): gser:=series(g,x=0,12560): 0,seq(coeff(gser,x^(4*n^2)),n=1..56); # Emeric Deutsch, Apr 03 2006
Formula
Extensions
Corrected and extended by Emeric Deutsch, Apr 03 2006
Comments