cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 59 results. Next

A026010 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n and s(0) = 2. Also a(n) = sum of numbers in row n+1 of array T defined in A026009.

Original entry on oeis.org

1, 2, 4, 7, 14, 25, 50, 91, 182, 336, 672, 1254, 2508, 4719, 9438, 17875, 35750, 68068, 136136, 260338, 520676, 999362, 1998724, 3848222, 7696444, 14858000, 29716000, 57500460, 115000920, 222981435, 445962870, 866262915, 1732525830, 3370764540
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) is the number of integer compositions of n + 2 in which the even parts appear as often at even positions as at odd positions (confirmed up to n = 19). - Gus Wiseman, Mar 17 2018

Examples

			The a(3) = 7 compositions of 5 in which the even parts appear as often at even positions as at odd positions are (5), (311), (131), (113), (221), (122), (11111). Missing are (41), (14), (32), (23), (212), (2111), (1211), (1121), (1112). - _Gus Wiseman_, Mar 17 2018
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(Floor((n+k)/2), Floor(k/2)): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Array[Sum[Binomial[Floor[(# + k)/2], Floor[k/2]], {k, 0, #}] &, 34, 0] (* Michael De Vlieger, May 16 2018 *)
    Table[2^(-1 + n)*(((2 + 3*#)*Gamma[(1 + #)/2])/(Sqrt[Pi]*Gamma[2 + #/2]) &[n + Mod[n, 2]]), {n,0,40}] (* Peter Pein, Nov 08 2018 *)
    Table[(1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*CatalanNumber[(2*n + 1 - (-1)^n)/4], {n, 0, 40}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, n--; sum(k=0,n, binomial(floor((n+k)/2), floor(k/2)))) \\ G. C. Greubel, Nov 08 2018
    

Formula

a(2*n) = ((3*n + 1)/(2*n + 1))*C(2*n + 1, n)= A051924(1+n), n>=0, a(2*n-1) = a(2*n)/2 = A097613(1+n), n >= 1. - Herbert Kociemba, May 08 2004
a(n) = Sum_{k=0..n} binomial(floor((n+k)/2), floor(k/2)). - Paul Barry, Jul 15 2004
Inverse binomial transform of A005774: (1, 3, 9, 26, 75, 216, ...). - Gary W. Adamson, Oct 22 2007
Conjecture: (n+3)*a(n) - 2*a(n-1) + (-5*n-3)*a(n-2) + 2*a(n-3) + 4*(n-3)*a(n-4) = 0. - R. J. Mathar, Jun 20 2013
a(n) = (1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*Catalan((2*n + 1 - (-1)^n)/4), where Catalan is the Catalan number = A000108. - G. C. Greubel, Nov 08 2018

A350849 Number of odd conjugate parts minus number of even parts in the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 0, 3, 0, 3, 1, -2, 2, 5, 1, 5, 2, 0, 0, 7, -1, 7, 3, 0, 4, 9, 0, 0, 4, -1, 3, 9, 1, 11, 1, 2, 6, 0, -2, 11, 6, 2, 2, 13, 1, 13, 5, 1, 8, 15, 1, -2, 1, 4, 5, 15, -2, 2, 2, 4, 8, 17, 0, 17, 10, 1, 0, 2, 3, 19, 7, 6, 1, 19, -1, 21, 10, 1, 7, 0, 3, 21, 3
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			First positions n such that a(n) = 4, 3, 2, 1, 0, -1, -2, -3, -4, together with their prime indices, are:
   22: (5,1)
    5: (3)
   10: (3,1)
    2: (1)
    1: ()
   18: (2,2,1)
    9: (2,2)
  162: (2,2,2,2,1)
   81: (2,2,2,2)
		

Crossrefs

This is a hybrid of A195017 and A350941.
Positions of 0's are A349157.
Counting even conjugate parts instead of even parts gives A350941.
The conjugate version is A350942.
A257991 counts odd parts, conjugate A344616.
A257992 counts even parts, conjugate A350847.
The following rank partitions:
A325698: # of even parts = # of odd parts.
A349157: # of even parts = # of odd conjugate parts, counted by A277579.
A350848: # even conj parts = # odd conj parts, counted by A045931.
A350943: # of even conjugate parts = # of odd parts, counted by A277579.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents conjugation using Heinz numbers.
A316524 = alternating sum of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Count[conj[primeMS[n]],?OddQ]-Count[primeMS[n],?EvenQ],{n,100}]

Formula

a(n) = A344616(n) - A257992(n).

A350946 Heinz numbers of integer partitions with as many even parts as odd parts and as many even conjugate parts as odd conjugate parts.

Original entry on oeis.org

1, 6, 65, 84, 210, 216, 319, 490, 525, 532, 731, 1254, 1403, 1924, 2184, 2340, 2449, 2470, 3024, 3135, 3325, 3774, 4028, 4141, 4522, 5311, 5460, 7030, 7314, 7315, 7560, 7776, 7942, 8201, 8236, 9048, 9435, 9464, 10659, 10921, 11484, 11914, 12012, 12025, 12740
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
     1: ()
     6: (2,1)
    65: (6,3)
    84: (4,2,1,1)
   210: (4,3,2,1)
   216: (2,2,2,1,1,1)
   319: (10,5)
   490: (4,4,3,1)
   525: (4,3,3,2)
   532: (8,4,1,1)
   731: (14,7)
  1254: (8,5,2,1)
  1403: (18,9)
  1924: (12,6,1,1)
  2184: (6,4,2,1,1,1)
  2340: (6,3,2,2,1,1)
  2449: (22,11)
  2470: (8,6,3,1)
For example, the prime indices of 532 are (8,4,1,1), even/odd counts 2/2, and the prime indices of the conjugate 3024 are (4,2,2,2,1,1,1,1), with even/odd counts 4/4; so 532 belongs to the sequence.
		

Crossrefs

For the first condition alone:
- counted by A045931 (strict A239241)
- ordered version (compositions) A098123
- ranked by A325698
- without multiplicity A325700 (counted by A241638)
The second condition alone is ranked by A350848, strict A352129.
These partitions are counted by A351977, strict A352128.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other possible pairings of statistics:
- A349157: # of even parts = # of odd conjugate parts, counted by A277579.
- A350943: # of even conj parts = # of odd parts, strict counted by A352130.
- A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
- A350945: # of even parts = # of even conjugate parts, counted by A350948.
There are two other possible double-pairings of statistics:
- A350949, counted by A351976.
- A351980, counted by A351981.
The case of all four statistics equal is A350947, counted by A351978.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A316524 = alternating sum of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[1000],#==1||Mean[Mod[primeMS[#],2]]== Mean[Mod[conj[primeMS[#]],2]]==1/2&]

Formula

Closed under A122111 (conjugation).
Intersection of A325698 and A350848.
A257992(a(n)) = A257991(a(n)).
A350847(a(n)) = A344616(a(n)).

A350950 Number of even parts minus number of even conjugate parts in the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, -1, 0, 0, 1, 0, 0, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, 0, 1, 0, 0, -3, 0, 3, 1, 1, 0, 0, 0, -1, -1, -2, 0, 1, 0, 0, -1, 0, 1, 1, 0, 2, -1, 0, 1, -2, -2, -1, 1, 1, 2, -3, 0, 0, 0, 0, -1, 1, -1, 3, -1, -2, 0, 0, 0, -1, -1, 1, 1, 0, 0, 0, 1, -3, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The prime indices of 78 are (6,2,1), with conjugate (3,2,1,1,1,1), so a(78) = 2 - 1 = 1.
		

Crossrefs

The version comparing even with odd parts is A195017.
The version comparing even with odd conjugate parts is A350849.
The version comparing even conjugate with odd conjugate parts is A350941.
The version comparing odd with even conjugate parts is A350942.
Positions of 0's are A350945, counted by A350948.
The version comparing odd with odd conjugate parts is A350951.
There are four individual statistics:
- A257991 counts odd parts, conjugate A344616.
- A257992 counts even parts, conjugate A350847.
There are five other possible pairings of statistics:
- A325698: # of even parts = # of odd parts, counted by A045931.
- A349157: # of even parts = # of odd conjugate parts, counted by A277579.
- A350848: # of even conj parts = # of odd conj parts, counted by A045931.
- A350943: # of even conjugate parts = # of odd parts, counted by A277579.
- A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
There are three possible double-pairings of statistics:
- A350946, counted by A351977.
- A350949, counted by A351976.
- A351980, counted by A351981.
The case of all four statistics equal is A350947, counted by A351978.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A116482 counts partitions by number of even parts.
A122111 represents partition conjugation using Heinz numbers.
A316524 gives the alternating sum of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Count[primeMS[n],?EvenQ]-Count[conj[primeMS[n]],?EvenQ],{n,100}]

Formula

a(n) = A257992(n) - A350847(n).
a(A122111(n)) = -a(n), where A122111 represents partition conjugation.

A350951 Number of odd parts minus number of odd conjugate parts in the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, -2, 2, -2, 0, -4, 2, 0, 0, -4, 0, -6, -2, 0, 4, -6, 0, -8, 0, -2, -2, -8, 2, 2, -4, -2, -2, -10, 0, -10, 4, -2, -4, 0, 2, -12, -6, -4, 2, -12, -2, -14, -2, -2, -6, -14, 2, 0, 2, -4, -4, -16, 0, 0, 0, -6, -8, -16, 2, -18, -8, -4, 6, -2, -2, -18, -4, -6, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
All terms are even.

Examples

			The prime indices of 78 are (6,2,1), with conjugate (3,2,1,1,1,1), so a(78) = 1 - 5 = -4.
		

Crossrefs

The version comparing even with odd parts is A195017.
The version comparing even with odd conjugate parts is A350849.
The version comparing even conjugate with odd conjugate parts is A350941.
The version comparing odd with even conjugate parts is A350942.
Positions of 0's are A350944, even rank case A345196, counted by A277103.
The version comparing even with even conjugate parts is A350950.
There are four individual statistics:
- A257991 counts odd parts, conjugate A344616.
- A257992 counts even parts, conjugate A350847.
There are five other possible pairings of statistics:
- A325698: # of even parts = # of odd parts, counted by A045931.
- A349157: # of even parts = # of odd conjugate parts, counted by A277579.
- A350848: # of even conj parts = # of odd conj parts, counted by A045931.
- A350943: # of even conjugate parts = # of odd parts, counted by A277579.
- A350945: # of even parts = # of even conjugate parts, counted by A350948.
There are three possible double-pairings of statistics:
- A350946, counted by A351977.
- A350949, counted by A351976.
- A351980, counted by A351981.
The case of all four statistics equal is A350947, counted by A351978.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A103919 counts partitions by number of odd parts.
A116482 counts partitions by number of even parts.
A122111 represents partition conjugation using Heinz numbers.
A316524 gives the alternating sum of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Count[primeMS[n],?OddQ]-Count[conj[primeMS[n]],?OddQ],{n,100}]

Formula

a(n) = A257991 - A344616(n).
a(A122111(n)) = -a(n), where A122111 represents partition conjugation.

A365067 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n whose odd parts sum to k, for k ranging from mod(n,2) to n in steps of 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 4, 3, 4, 3, 5, 5, 3, 4, 4, 6, 5, 6, 6, 5, 8, 7, 5, 6, 8, 6, 10, 7, 10, 9, 10, 8, 12, 11, 7, 10, 12, 12, 10, 15, 11, 14, 15, 15, 16, 12, 18, 15, 11, 14, 20, 18, 20, 15, 22, 15, 22, 21, 25, 24, 24, 18, 27
Offset: 0

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The version for all k = 0..n is A113685 (including zeros).

Examples

			Triangle begins:
   1
   1
   1  1
   1  2
   2  1  2
   2  2  3
   3  2  2  4
   3  4  3  5
   5  3  4  4  6
   5  6  6  5  8
   7  5  6  8  6 10
   7 10  9 10  8 12
  11  7 10 12 12 10 15
  11 14 15 15 16 12 18
  15 11 14 20 18 20 15 22
  15 22 21 25 24 24 18 27
Row n = 8 counts the following partitions:
  (8)     (611)    (431)     (521)      (71)
  (62)    (4211)   (41111)   (332)      (53)
  (44)    (22211)  (3221)    (32111)    (5111)
  (422)            (221111)  (2111111)  (3311)
  (2222)                                (311111)
                                        (11111111)
Row n = 9 counts the following partitions:
  (81)     (63)      (54)       (72)        (9)
  (621)    (6111)    (522)      (5211)      (711)
  (441)    (432)     (4311)     (3321)      (531)
  (4221)   (42111)   (411111)   (321111)    (51111)
  (22221)  (3222)    (32211)    (21111111)  (333)
           (222111)  (2211111)              (33111)
                                            (3111111)
                                            (111111111)
		

Crossrefs

Row sums are A000041.
The version including all k is A113685, even version A113686.
Column k = 1 is A119620.
The even version and the reverse version are both A174713.
For odd-indexed instead of odd parts we have A346697, even version A346698.
The corresponding rank statistic is A366528, even version A366531.
A000009 counts partitions into odd parts, ranks A066208.
A086543 counts partitions with odd parts, ranks A366322.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Total[Select[#,OddQ]]==k&]],{n,0,15},{k,Mod[n,2],n,2}]

Formula

T(n,k) = A000009(k) * A000041((n-k)/2).

A350941 Number of odd conjugate parts minus number of even conjugate parts in the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 2, -1, 3, 0, 4, 1, -2, 1, 5, 2, 6, 2, -1, -1, 7, 0, 8, 3, 0, 3, 9, 0, -3, 4, 2, 4, 10, 1, 11, 1, 1, 5, -2, -2, 12, 6, 2, 1, 13, 2, 14, 5, 3, 7, 15, 2, -4, -1, 3, 6, 16, 0, -1, 2, 4, 8, 17, -1, 18, 9, 4, -1, 0, 3, 19, 7, 5, 0, 20, 0, 21, 10, 1, 8, -3, 4
Offset: 0

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			First positions n such that a(n) = 4, 3, 2, 1, 0, -1, -2, -3, -4, together with their prime indices, are:
   7: (4)
   5: (3)
   3: (2)
   2: (1)
   1: ()
   4: (1,1)
   9: (2,2)
  25: (3,3)
  49: (4,4)
		

Crossrefs

A hybrid with A195017 (non-conjugate version) is A350849, conjugate A350942.
Positions of 0's are A350848, counted by A045931.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents conjugation using Heinz numbers.
A257991 counts odd parts, conjugate A344616.
A257992 counts even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325698: # of even parts = # of odd parts.
A349157: # of even parts = # of odd conjugate parts, counted by A277579.
A350943: # of even conjugate parts = # of odd parts, counted by A277579.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Count[conj[primeMS[n]],?OddQ]-Count[conj[primeMS[n]],?EvenQ],{n,1,50}]

Formula

a(n) = A344616(n) - A350847(n).

A351976 Number of integer partitions of n with (1) as many odd parts as odd conjugate parts and (2) as many even parts as even conjugate parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 4, 5, 5, 5, 6, 9, 11, 11, 16, 21, 22, 24, 31, 41, 46, 48, 64, 82, 91, 98, 120, 155, 175, 188, 237, 297, 329, 357, 437, 544, 607, 658, 803, 987, 1098, 1196, 1432, 1749, 1955, 2126, 2541, 3071, 3417, 3729, 4406, 5291, 5890, 6426
Offset: 0

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Examples

			The a(n) partitions for selected n:
n = 3     8       11        12        15          16
   ----------------------------------------------------------
    (21)  (332)   (4322)    (4332)    (4443)      (4444)
          (4211)  (4331)    (4422)    (54321)     (53332)
                  (4421)    (4431)    (632211)    (55222)
                  (611111)  (53211)   (633111)    (55411)
                            (621111)  (642111)    (633211)
                                      (81111111)  (642211)
                                                  (643111)
                                                  (7321111)
                                                  (82111111)
		

Crossrefs

The first condition alone is A277103, ranked by A350944, strict A000700.
The second condition alone is A350948, ranked by A350945.
These partitions are ranked by A350949.
A000041 counts integer partitions.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other possible pairings of statistics:
- A045931: # even = # odd, ranked by A325698, strict A239241.
- A045931: # even conj = # odd conj, ranked by A350848, strict A352129.
- A277579: # even = # odd conj, ranked by A349157, strict A352131.
- A277579: # even conj = # odd, ranked by A350943, strict A352130.
There are two other possible double-pairings of statistics:
- A351977: # even = # odd, # even conj = # odd conj, ranked by A350946.
- A351981: # even = # odd conj, # odd = # even conj, ranked by A351980.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

A351977 Number of integer partitions of n with as many even parts as odd parts and as many even conjugate parts as odd conjugate parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 2, 0, 2, 4, 2, 1, 6, 6, 7, 9, 11, 10, 13, 17, 17, 21, 28, 36, 35, 41, 58, 71, 72, 90, 106, 121, 142, 178, 191, 216, 269, 320, 344, 400, 486, 564, 633, 734, 867, 991, 1130, 1312, 1509, 1702, 1978, 2288, 2582, 2917, 3404
Offset: 0

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Examples

			The a(n) partitions for selected n (A..C = 10..12):
n = 3     9         15            18          20
   ----------------------------------------------------------
    (21)  (63)      (A5)          (8433)      (8543)
          (222111)  (632211)      (8532)      (8741)
                    (642111)      (8631)      (C611)
                    (2222211111)  (43322211)  (43332221)
                                  (44322111)  (44432111)
                                  (44421111)  (84221111)
                                              (422222111111)
		

Crossrefs

The first condition alone is A045931, ranked by A325698, strict A239241.
The second condition alone is A045931, ranked by A350848, strict A352129.
These partitions are ranked by A350946.
The strict case is A352128.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four additional pairings of statistics:
- A277579: # even = # odd conj, ranked by A349157, strict A352131.
- A277579: # even conj = # odd, ranked by A350943, strict A352130.
- A277103: # odd = # odd conj, ranked by A350944, strict A000700.
- A350948: # even = # even conj, ranked by A350945.
There are two additional double-pairings of statistics:
- A351981, ranked by A351980.
- A351976, ranked by A350949.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==Count[#,?EvenQ]&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]

A351978 Number of integer partitions of n for which the number of even parts, the number of odd parts, the number of even conjugate parts, and the number of odd conjugate parts are all equal.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 6, 1, 3, 1, 8, 5, 3, 5, 7, 14, 2, 13, 9, 28, 5, 22, 26, 44, 17, 30, 60, 59, 42, 41, 120, 84, 84, 66, 204, 143, 144, 131, 325, 268, 226, 261, 486, 498, 344, 488, 739, 874
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) partitions for selected n (A = 10):
n = 3    12     19       21       23       24         27
   --------------------------------------------------------------
    21   4332   633322   643332   644333   84332211   655443
         4431   643321   654321   654332   84441111   655542
                644311   665211   654431   85322211   665541
                653221            655322   86322111   666333
                654211            655421   86421111   666531
                664111            664331              A522221111
                                  665321              A622211111
                                  666311
		

Crossrefs

The strict case appears to be the indicator function for A014105.
These partitions are ranked by A350947.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are six pairings of statistics:
- A045931: # of even parts = # of odd parts:
- ordered A098123
- strict A239241
- ranked by A325698
- A045931: # even conj = # odd conj, ranked by A350848, strict A352129.
- A277579: # even = # odd conj, ranked by A349157, strict A352131.
- A277103: # odd = # odd conj, ranked by A350944, strict A000700.
- A277579: # even conj = # odd, ranked by A350943, strict A352130.
- A350948: # even = # even conj, ranked by A350945.
There are three double-pairings of statistics:
- A351976, ranked by A350949.
- A351977, ranked by A350946.
- A351981, ranked by A351980.
A000041 counts integer partitions, strict A000009.
A103919 and A116482 count partitions by sum and number of odd/even parts.
A195017 = # of even parts - # of odd parts.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[#,?OddQ]==Count[conj[#],?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,30}]
Previous Showing 21-30 of 59 results. Next