cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A337112 Smallest term of A337081 that has exactly n prime factors, or 0 if no such term exists.

Original entry on oeis.org

0, 4, 0, 90, 675, 1134, 6318, 4374, 32805, 255879, 1003833, 531441, 327544803, 20751953125, 225830078125, 91552734375, 1068115234375, 23651123046875, 316619873046875, 1697540283203125, 13256072998046875, 85353851318359375, 541210174560546875, 4518032073974609375, 58233737945556640625
Offset: 1

Views

Author

Matej Veselovac, Aug 16 2020

Keywords

Comments

a(n) is the smallest product of n primes that has unordered factorizations whose sums of factors are the same (is a term of A337080) and all of whose proper divisors have the complementary property: that every unordered factorization has a distinct sum of factors (i.e., all proper divisors are terms of A337037).

Crossrefs

Cf. A337113 (factors of terms).
Cf. A056472 (all factorizations of n).
Cf. r-almost primes: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).

Extensions

a(14) onward from David A. Corneth, Aug 26 2020

A112445 Pseudoprimes (base 2) equal to the product of 7 primes not necessarily distinct.

Original entry on oeis.org

370851481, 1310486905, 1452092005, 1553860945, 2719940041, 3328293745, 3860623585, 5394826801, 5612626041, 5659475185, 6295936465, 8857509661, 9234602385, 10780911505, 10975165201, 11718888181, 12254138065, 12416553721, 12452890681, 13577445505, 14795826661
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 11 2005

Keywords

Examples

			a(1) = 370851481 = 7*11*13*17*19*31*37.
		

Crossrefs

Intersection of A046308 and A001567.

Programs

  • Mathematica
    s={}; Do[If[PrimeOmega[n] == 7 && PowerMod[2, n - 1, n] == 1, AppendTo[s, n]], {n, 1, 2*10^9}]; s (* Amiram Eldar, Nov 10 2019 *)

Extensions

More terms from Amiram Eldar, Nov 10 2019

A114417 Records in 7-almost prime gaps, ordered by merit.

Original entry on oeis.org

64, 96, 112, 168, 210, 280
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			Records defined in terms of A114407 and A046308:
n A114407(n) A114407(n)/log(A046308(n))
1 64 64/log 128 = 30.371914
2 96 96/log 192 = 42.0443868
3 32 32/log 288 = 13.0113433
4 112 112/log 320 = 44.7079021
5 16 16/log 432 = 6.07099172
6 32 32/log 448 = 12.0696509
7 168 168/log 480 = 62.6575474
8 24 24/log 648 = 8.53614076
		

Crossrefs

Formula

a(n) = Records in A114417(n)/log(A046308(n)) = Records in (A046308(n+1) - A046308(n))/log(A046308(n)).

Extensions

a(5)-a(6) from Donovan Johnson, Feb 17 2010

A114446 Indices of 7-almost prime pentagonal numbers.

Original entry on oeis.org

27, 43, 96, 107, 128, 147, 180, 187, 203, 224, 288, 312, 336, 352, 360, 387, 392, 395, 400, 411, 416, 475, 480, 486, 491, 495, 523, 539, 544, 560, 572, 587, 592, 600, 603, 619, 621, 627, 635, 704, 729, 735, 752, 763, 779, 795, 800, 810, 819, 840, 843, 882
Offset: 1

Views

Author

Jonathan Vos Post, Feb 14 2006

Keywords

Comments

P(2) = 5 is the only prime pentagonal number, all other factor as P(k) = (k/2)*(3*k-1) or k*((3*k-1)/2) and thus have at least 2 prime factors. P(k) is semiprime iff [k prime and (3*k-1)/2 prime] or [k/2 prime and 3*k-1 prime].

Examples

			a(1) = 27 because P(27) = PentagonalNumber(27) = 27*(3*27-1)/2 = 1080 = 2^3 * 3^3 * 5 is a 7-almost prime.
a(2) = 43 because P(43) = 43*(3*43-1)/2 = 2752 = 2^6 * 43 is a 7-almost prime.
a(7) = 180 because P(180) = 180*(3*180-1)/2 = 48510 = 2 * 3^2 * 5 x 7^2 * 11 is a 7-almost prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],PrimeOmega[# (3#-1)/2]==7&] (* Harvey P. Dale, Jul 16 2011 *)

Formula

{a(n)} = {k such that A001222(A000326(k)) = 7}.
{a(n)} = {k such that k*(3*k-1)/2 has exactly 7 prime factors}.
{a(n)} = {k such that A000326(k) is an element of A046308}.

Extensions

More terms from Harvey P. Dale, Jul 16 2011

A114505 Numbers k such that the k-th hexagonal number is a 7-almost prime.

Original entry on oeis.org

48, 64, 68, 72, 80, 88, 96, 104, 108, 122, 140, 162, 168, 188, 203, 208, 216, 228, 230, 240, 243, 264, 272, 280, 308, 312, 324, 360, 378, 380, 396, 408, 410, 424, 428, 438, 440, 446, 450, 473, 486, 513, 518, 527, 544, 564, 567, 572, 578, 620, 638, 662, 666, 675, 689, 696
Offset: 1

Views

Author

Jonathan Vos Post, Feb 14 2006

Keywords

Comments

There are no prime hexagonal numbers. The k-th hexagonal number A000384(k) = k*(2*k-1) is semiprime iff both k and 2*k-1 are primes iff A000384(k) is an element of A001358 iff k is an element of A005382.

Examples

			a(1) = 48 because HexagonalNumber(48) = H(48) = 48*(2*48-1) = 4560 = 2^4 * 3 * 5 * 19 is a 7-almost prime.
a(2) = 64 because H(64) = 64*(2*64-1) = 8128 = 2^6 * 127 is a 7-almost prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[800],PrimeOmega[#(2#-1)]==7&] (* Harvey P. Dale, Jul 20 2013 *)
    Position[PrimeOmega[PolygonalNumber[6,Range[700]]],7]//Flatten (* Harvey P. Dale, Jan 10 2024 *)

Formula

Numbers k such that hexagonal number A000384(k) is an element of A046308.
Numbers k such that A001222(A000384(k)) = 7.
Numbers k such that A001222(k*(2*k-1)) = 7.

A114559 Numbers k such that the k-th heptagonal number is 7-almost prime.

Original entry on oeis.org

60, 63, 72, 114, 144, 159, 167, 180, 183, 207, 216, 225, 247, 255, 275, 297, 312, 315, 320, 330, 343, 352, 360, 378, 387, 391, 399, 405, 408, 411, 416, 420, 429, 440, 447, 448, 450, 459, 465, 468, 483, 486, 504, 513, 520, 525, 531, 546, 588, 591, 594, 609
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2006

Keywords

Examples

			a(1) = 60 because Hep(60) = 60*(5*60-3)/2 = 8910 = 2 * 3^4 * 5 * 11 is 7-almost prime.
a(2) = 63 because Hep(63) = 63*(5*63-3)/2 = 9828 = 2^2 * 3^3 * 7 * 13 is 7-almost prime.
a(3) = 72 because Hep(72) = 72*(5*72-3)/2 = 12852 = 2^2 * 3^3 * 7 * 17 is 7-almost prime.
a(4) = 114 because Hep(114) = 114*(5*114-3)/2 = 32319 = 3^5 * 7 * 19 is 7-almost prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250],PrimeOmega[(#(5#-3))/2]==7&] (* Harvey P. Dale, May 02 2019 *)

Formula

Numbers k such that Hep(k) = k*(5*k-3)/2 is 7-almost prime.
Numbers k such that A000566(k) is a term of A046308.
Numbers k such that A001222(A000566(k)) = 7.
Numbers k such that A001222(k*(5*k-3)/2) = 7.

Extensions

More terms from Harvey P. Dale, May 02 2019

A114828 Numbers k such that the k-th octagonal number has 9 prime factors counted with multiplicity.

Original entry on oeis.org

64, 96, 128, 144, 162, 182, 198, 216, 224, 234, 246, 270, 278, 288, 304, 310, 320, 324, 352, 390, 414, 416, 432, 438, 480, 504, 528, 544, 550, 558, 584, 594, 600, 646, 648, 654, 662, 684, 694, 702, 710, 729, 750, 752, 756, 798, 810, 834, 850, 870, 888, 900
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Comments

k has at most 8 prime factors counted with multiplicity.

Examples

			a(1) = 64 because OctagonalNumber(64) = Oct(64) = 64*(3*64-2) = 12160 = 2^7 * 5 * 19 has exactly 9 prime factors (seven are all equally 2; factors need not be distinct).
a(2) = 96 because Oct(96) = 96*(3*96-2) = 27456 = 2^6 * 3 * 11 * 13 is 9-almost prime [also 27456 = Oct(96) = Oct(Oct(6)) is an iterated octagonal number].
a(3) = 128 because Oct(128) = 128*(3*128-2) = 48896 = 2^8 * 191.
		

Crossrefs

Programs

  • Magma
    A000567:=func< n | n*(3*n-2) >; Is9almostprime:=func< n | &+[k[2]: k in Factorization(n)] eq 9 >; [ n: n in [2..1000] | Is9almostprime(A000567(n)) ]; // Klaus Brockhaus, Dec 22 2010
    
  • Mathematica
    Select[Range[900],PrimeOmega[PolygonalNumber[8,#]]==9&] (* James C. McMahon, Jul 30 2024 *)
  • PARI
    isok(k) = bigomega(k*(3*k-2)) == 9; \\ Michel Marcus, Aug 02 2024

Formula

Integers k such that k*(3*k-2) has exactly nine prime factors (with multiplicity).
Integers k such that A000567(k) is a term of A046312.
Integers k such that A001222(A000567(k)) = 9.
Integers k such that A001222(k) + A001222(3*k-2) = 9.
Integers k such that (3*k-2)*(3*k-1)*(3*k)/((3*k-2)+(3*k-1)+(3*k)) is in A046310.

Extensions

Missing terms inserted by R. J. Mathar, Dec 22 2010
a(40)-a(52) from James C. McMahon, Jul 30 2024
Name edited by David A. Corneth, Jul 31 2024

A213063 Balanced numbers (of order one): k-almost primes that are the average of three successive k-almost primes.

Original entry on oeis.org

5, 34, 53, 68, 86, 94, 102, 122, 142, 157, 171, 173, 185, 188, 194, 202, 204, 211, 214, 218, 245, 257, 258, 262, 263, 285, 289, 302, 314, 321, 338, 342, 358, 366, 371, 373, 394, 404, 407, 413, 415, 422, 429, 435, 446, 471, 489, 490, 493, 497, 507, 513, 517, 524, 535, 562
Offset: 1

Views

Author

Gerasimov Sergey, Jun 03 2012

Keywords

Comments

Balanced numbers of order one: defined by the union of balanced primes A006562, balanced semiprimes A213025, balanced 3-almost primes (68, 102, 171, 188, 245, 258, 285, 338, 366, 404, 429, 435, 507, 524,..), balanced 4-almost primes (204, 342, 490, 513,..),.., balanced k-almost primes - all of order one.
Balanced numbers of order two are 79, 119, 148, 205, 218, 281, 299, 302, 339, 349, 410, 439, 493,.., defined by the union of balanced primes of order two of A082077, balanced semiprimes of order two (119, 205, 218, 299, 302, 339, 493,..), balanced 3-almost primes of order two (148, 410, 604, 609, 642..),.., balanced k-almost primes of order two.

Crossrefs

Programs

  • PARI
    list(lim)={
    lim=lim\1+.5;
    my(v=List(),L=log(lim)\log(2),left=vector(L),middle=vector(L),t);
    for(n=3,2*lim,
    t=bigomega(n);
    if(t>L,next);
    if(middle[t],
    if(2*middle[t] == left[t] + n,
    if(middle[t] < lim,
    listput(v,middle[t])
    ,
    if(vecmin(middle) > lim, return(vecsort(Vec(v))))
    )
    );
    left[t]=middle[t];
    middle[t]=n
    ,
    if(left[t],middle[t]=n,left[t]=n)
    )
    )
    }; \\ Charles R Greathouse IV, Jun 14 2012

A288517 Least integer k such that A001358(k) + A001358(k+1) is the product of exactly n prime factors (counting multiplicity).

Original entry on oeis.org

3, 1, 28, 4, 19, 39, 48, 89, 120, 551, 447, 589, 3707, 10137, 21644, 28456, 22998, 44494, 86132, 166930, 703448, 628371, 1220814, 1608668, 11153853, 6091437, 56676014, 268389220, 146153797, 193010987, 916382785, 738246947, 4702317172, 2830095027, 12627951809
Offset: 1

Views

Author

Zak Seidov, Jun 10 2017

Keywords

Examples

			n=1: k=3, A001358(3) + A001358(4) = 9 + 10 = 19 = A000040(8) (8th prime),
n=2: k=1, A001358(1)+A001358(2) = 4+6 = 10 = 2*5 = A001358(4) (4th semiprime),
n=11: k=447, A001358(447)+A001358(448) = 1535+1537 = 3072 = 2^10*3 = A069272(2) (2nd 11-almost prime).
		

Crossrefs

Extensions

a(21)-a(35) from Charles R Greathouse IV, Jun 10 2017

A321169 a(n) is the smallest prime p such that p + 2 is a product of n primes (counted with multiplicity).

Original entry on oeis.org

3, 2, 43, 79, 241, 727, 3643, 15307, 19681, 164023, 1673053, 885733, 2657203, 18600433, 23914843, 100442347, 358722673, 645700813, 4519905703, 18983603959, 48427561123, 31381059607, 261508830073, 1307544150373, 3295011258943, 24006510600883, 12709329141643, 53379182394907, 190639937124673, 2615579937350539
Offset: 1

Views

Author

Amiram Eldar and Zak Seidov, Jan 10 2019

Keywords

Comments

a(n) ~ c * 3^n. - David A. Corneth, Jan 11 2019

Examples

			a(1) = 3 as 3 + 2 = 5 (prime),
a(2) = 2 as 2 + 2 = 4 = 2*2 (semiprime),
a(3) = 43 as 43 + 2 = 45 = 3*3*5  (3-almost prime),
a(4) = 79 as 79 + 2 = 81 = 3*3*3*3 (4-almost prime).
		

Crossrefs

Programs

  • Mathematica
    ptns[n_, 0] := If[n == 0, {{}}, {}]; ptns[n_, k_] := Module[{r}, If[n < k, Return[{}]]; ptns[n, k] = 1 + Union @@ Table[PadRight[#, k] & /@ ptns[n - k, r], {r, 0, k}]]; a[n_] := Module[{i, l, v}, v = Infinity; For[i = n, True, i++, l = (Times @@ Prime /@ # &) /@ ptns[i, n]; If[Min @@ l > v, Return[v]]; minp = Min @@ Select[l - 2, PrimeQ]; If[minp < v, v = minp]]] ; Array[a, 10] (* after Amarnath Murthy at A073919 *)
  • PARI
    a(n) = forprime(p=2, , if (bigomega(p+2) == n, return (p))); \\ Michel Marcus, Jan 10 2019
    
  • PARI
    a(n) = {my(p3 = 3^n, u, c); if(n <= 2, return(4 - n)); if(isprime(p3 - 2), return(p3 - 2)); forprime(p = 5, oo, if(isprime(p3 / 3 * p - 2), u = p3 / 3 * p - 2; break ) ); for(i = 2, n, if(p3 * (5/3)^i > u, return(u)); for(j = 1, oo, if(p3 * j \ 3^i > u, next(2)); if(bigomega(j) == i, if(isprime(p3 / 3^(i) * j - 2), u = p3 / 3^(i) * j - 2; next(2) ) ) ) ); return(u) } \\ David A. Corneth, Jan 11 2019
Previous Showing 41-50 of 53 results. Next