cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A380530 Positions of records in A380528.

Original entry on oeis.org

1, 4, 10, 42, 366, 3246, 37266, 631266, 11563926, 271591926
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2025

Keywords

Comments

Questions: Are all terms squarefree after 4, and do all terms end (in base ten) with digit 6 from the fifth term onward? Is the sequence infinite? Are there any terms with more than four prime factors? See also the conjecture given in A380475, and A380476.
For n = 1..10, A380528(a(n)) = A008578(n). If a(11) exists, it is > 2^30.
Note that for squarefree n with exactly 5 prime factors (A046387), it might be possible that primes obtained as A380528(A046387(.)) has no upper limit. First k in A046387 such that A380528(k) is a prime 2 .. 17 are: 15015, 2730, 2310, 83886, 1551066, 71559186, 1245223986. See also the last two examples in A380470 for two similar cases with exactly 6 prime factors. - Antti Karttunen, May 08 2025

Crossrefs

Cf. A008578 (conjectured to give the record values), A046387, A380528, A380459, A380468, A380470, A380475, A380476.

A078329 Primes p such that mu(p+1)=-1, where mu denotes the moebius function.

Original entry on oeis.org

2, 29, 41, 101, 109, 113, 137, 173, 181, 229, 257, 281, 317, 353, 373, 401, 409, 433, 601, 617, 641, 653, 677, 709, 761, 821, 829, 853, 937, 941, 977, 1009, 1021, 1033, 1069, 1117, 1129, 1181, 1193, 1297, 1361, 1373, 1433, 1489, 1597, 1613, 1669, 1697
Offset: 1

Views

Author

Shyam Sunder Gupta, Nov 21 2002

Keywords

Comments

Contains primes followed by primes (i.e., the 2), primes followed by sphenic numbers (A007304), or followed by elements of A046387, A123321, A115343 etc. - R. J. Mathar, Aug 14 2019
Primes followed by numbers that are the product of an odd number of distinct primes (A030059). - Joerg Arndt, Aug 14 2019

Examples

			29 is in the sequence because 29 is prime and mu(30)=-1.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[300]],MoebiusMu[#+1]==-1&] (* Harvey P. Dale, Feb 28 2013 *)

A340467 a(n) is the n-th squarefree number having n prime factors.

Original entry on oeis.org

2, 10, 66, 462, 4290, 53130, 903210, 17687670, 406816410, 11125544430, 338431883790, 11833068917670, 457077357006270, 20384767656323070, 955041577211912190, 49230430891074322890, 2740956243836856315270, 168909608387276001835590, 11054926927790884163355330
Offset: 1

Views

Author

Alois P. Heinz, Jan 08 2021

Keywords

Comments

a(n) is the n-th product of n distinct primes.
All terms are even.
This sequence differs from A073329 which has also nonsquarefree terms.

Examples

			a(1) = A000040(1) = 2.
a(2) = A006881(2) = 10.
a(3) = A007304(3) = 66.
a(4) = A046386(4) = 462.
a(5) = A046387(5) = 4290.
a(6) = A067885(6) = 53130.
a(7) = A123321(7) = 903210.
a(8) = A123322(8) = 17687670.
a(9) = A115343(9) = 406816410.
a(10) = A281222(10) = 11125544430.
		

Crossrefs

Programs

  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A340467(n):
        if n == 1: return 2
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Formula

a(n) = A340316(n,n).
a(n) = A005117(m) <=> A072047(m) = n = A340313(m).
A001221(a(n)) = A001222(a(n)) = n.
a(n) < A070826(n+1), the least odd number with exactly n distinct prime divisors.

A375264 Products of prime 5-tuples (p, p+4, p+6, p+10, p+12) where p = A022007(n).

Original entry on oeis.org

323323, 11769028333, 23075277662228863, 498323779650735373, 5774946339890457283, 964079483344036314403, 1069516017850492496773, 2764561257197073595813, 160896800504464381875853, 3214487754103795836790843, 5525765859191774942946523, 10569235342244010823461223, 1140114641548139662904736973
Offset: 1

Views

Author

Michael De Vlieger, Aug 16 2024

Keywords

Comments

Subsequence of A046387.
All terms are congruent to 13 (mod 30), since they are products m of the following residues (mod 30): {7, 11, 13, 17, 19}, and m mod 30 is congruent to 13.

Crossrefs

Programs

  • Mathematica
    Map[Times @@ NextPrime[#, Range[0, 4]] &, Select[Prime@ Range[2^16], AllTrue[{# + 4, # + 6, # + 10, # + 12}, PrimeQ] &]]

A077438 Numbers k such that Sum_{d|k} mu(d) mu(n/d)^2 = -1.

Original entry on oeis.org

4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 900, 961, 1369, 1681, 1764, 1849, 2209, 2809, 3481, 3721, 4356, 4489, 4900, 5041, 5329, 6084, 6241, 6889, 7921, 9409, 10201, 10404, 10609, 11025, 11449, 11881, 12100, 12769, 12996, 16129, 16900
Offset: 1

Views

Author

Benoit Cloitre, Nov 30 2002

Keywords

Comments

From Robert G. Wilson v, Dec 28 2016: (Start)
Union of {A000040, A007304, A046387, A123321, A115343, etc}^2 = Union of {A001248, A162143, etc} = A030059(n)^2.
Number of terms < 10^k: 2, 4, 12, 30, 98, 303, 957, ..., . (End)

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[#] MoebiusMu[n/#]^2 & /@ d) == -1]; Select[Range@17000, fQ] (* Robert G. Wilson v, Dec 28 2016 *)
  • PARI
    isok(n) = sumdiv(n, d, moebius(d)*moebius(n/d)^2) == -1; \\ Michel Marcus, Nov 08 2013
    
  • PARI
    is(n)=if(!issquare(n,&n), return(0)); my(f=factor(n)[,2]); #f%2 && vecmax(f)==1 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = A030059(n)^2.
From Amiram Eldar, Jun 16 2020: (Start)
Sum_{k>=1} 1/a(k) = 9/(2*Pi^2) = A088245.
Sum_{k>=1} 1/a(k)^2 = 15/(2*Pi^4). (End)

A375263 Products of prime 5-tuples (p, p+2, p+6, p+8, p+12) where p = A022006(n).

Original entry on oeis.org

85085, 1062347, 13710311357, 7260418981910177, 1070581737243007155797, 2766839311485334046837, 4100268039496291731347, 5485857138434357935487, 160955606471252225494877, 518874528458711923617827, 62276368576118330117536697, 124939289421198925662649757, 129296510584439756429395217
Offset: 1

Views

Author

Michael De Vlieger, Aug 16 2024

Keywords

Comments

Subsequence of A046387.
Aside from a(1) = 85085 = 5 (mod 30), all terms are congruent to 17 (mod 30), since a(k), k > 2 is a product m of the following residues (mod 30): {11, 13, 17, 19, 23}, and m mod 30 is congruent to 17.

Crossrefs

Programs

  • Mathematica
    Map[Times @@ NextPrime[#, Range[0, 4]] &, Select[Prime@ Range[2^16], AllTrue[{# + 2, # + 6, # + 8, # + 12}, PrimeQ] &]]

A282141 a(n)=least number strictly greater than n with an equivalent prime tower factorization.

Original entry on oeis.org

3, 5, 27, 7, 10, 11, 9, 25, 14, 13, 20, 17, 15, 21, 7625597484987, 19, 24, 23, 28, 22, 26, 29, 50, 32, 33, 3125, 44, 31, 42, 37, 49, 34, 35, 38, 100, 41, 39, 46, 45, 43, 66, 47, 52, 56, 51, 53, 80, 121, 98, 55, 54, 59, 68, 57, 63, 58, 62, 61, 84, 67, 65, 75
Offset: 2

Views

Author

Rémy Sigrist, Feb 07 2017

Keywords

Comments

The prime tower factorization of a number is defined in A182318.
The prime tower factorization equivalence classes are described in A279686.
For any n>1, a(n)=least k>n such that A279690(n)=A279690(k).
This sequence is a permutation of the complement of A279686.
This sequence is to prime tower factorization what A081761 is to prime signature.

Crossrefs

Programs

  • PARI
    a(n) = my (c=a279690(n)); my (k=n+1); while (c!=a279690(k), k++); k

Formula

a(A000040(n)) = A000040(n+1) for any n>0.
a(A006881(n)) = A006881(n+1) for any n>0.
a(A051674(n)) = A051674(n+1) for any n>0.
a(A007304(n)) = A007304(n+1) for any n>0.
a(A046386(n)) = A046386(n+1) for any n>0.
a(A046387(n)) = A046387(n+1) for any n>0.
a(A067885(n)) = A067885(n+1) for any n>0.

A327829 Squarefree numbers with a prime number of prime factors.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1

Views

Author

Sebastian F. Orellana, Sep 26 2019

Keywords

Comments

210 is the first integer in A120944 but not here: it has 4 prime factors.

Crossrefs

Subsequence of A120944.
A006881, A007304, A046387 are subsequences.
A046386, A067885 are not subsequences.

Programs

  • Mathematica
    Select[Range@ 161, And[SquareFreeQ@ #, PrimeQ@ PrimeNu@ #] &] (* Michael De Vlieger, Sep 29 2019 *)
  • PARI
    isok(n) = issquarefree(n) && isprime(omega(n)); \\ Michel Marcus, Sep 27 2019

Formula

A006881 UNION A007304 UNION A046387 UNION A123321 UNION .... - R. J. Mathar, Oct 13 2019

Extensions

Corrected and extended by Michel Marcus, Sep 27 2019

A353019 Heptagonal numbers which are products of five distinct primes.

Original entry on oeis.org

32890, 48790, 102718, 167314, 236698, 239785, 260338, 330694, 360430, 389470, 455182, 749938, 884170, 932386, 960070, 1007110, 1104565, 1334806, 1397638, 1423930, 1488802, 1515934, 1610818, 1679770, 1721005, 1741810, 1952314, 2046205, 2312167, 2365363, 2473570, 2503501, 2513518, 2558842
Offset: 1

Views

Author

Massimo Kofler, Apr 17 2022

Keywords

Comments

A squarefree subsequence of heptagonal numbers.

Examples

			32890 = 2*5*11*13*23 = 115(5*115-3)/2.
48790 = 2*5*7*17*41 = 140(5*140-3)/2.
102718 = 2*7*11*23*29 = 203(5*203-3)/2.
167314 = 2*7*17*19*37 = 259(5*259-3)/2.
		

Crossrefs

Intersection of A000566 and A046387.

Programs

  • Maple
    f:= proc(n) local k, F;
      k:= n*(5*n-3)/2;
      F:= ifactors(k)[2];
      if F[..,2] = [1,1,1,1,1] then k fi
    end proc:
    map(f, [$1..2000]); # Robert Israel, Jul 29 2025
  • Mathematica
    Select[Table[n*(5*n - 3)/2, {n, 1, 1000}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1, 1} &] (* Amiram Eldar, Apr 17 2022 *)
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen():
        for h in (n*(5*n-3)//2 for n in count(1)):
            f = factorint(h, multiple=True)
            if len(f) == len(set(f)) == 5: yield h
    print(list(islice(agen(), 34))) # Michael S. Branicky, May 28 2022

A354976 Squarefree tetrahedral numbers which are products of five distinct primes.

Original entry on oeis.org

7770, 14190, 98770, 121485, 129766, 273819, 383306, 457310, 632710, 735130, 848046, 971970, 1072445, 1456935, 1543465, 2027795, 2135445, 2190670, 2731135, 3136805, 3817670, 4775385, 4869634, 5159805, 5564321, 5989445, 6099006, 6209895, 8579746, 9145270, 9735114, 9886435
Offset: 1

Views

Author

Massimo Kofler, Jun 15 2022

Keywords

Comments

A squarefree subsequence of tetrahedral numbers.

Examples

			7770 = 35*36*37/6 = 2*3*5*7*37
14190 = 43*44*45/6 = 2*3*5*11*43
98770 = 83*84*85/6 = 2*5*7*17*83
121485 = 89*90*91/6 = 3*5*7*13*89
		

Crossrefs

Intersection of A000292 and A046387.
Subsequence of A070755.

Programs

  • Maple
    q:= n-> is(map(x-> x[2], ifactors(n)[2])=[1$5]):
    select(q, [n*(n+1)*(n+2)/6$n=1..500])[];  # Alois P. Heinz, Jun 15 2022
  • Mathematica
    Select[Table[n*(n+1)*(n+2)/6, {n, 1, 400}], FactorInteger[#][[;;, 2]] == {1, 1, 1, 1, 1} &] (* Amiram Eldar, Jun 15 2022 *)
    Select[Binomial[Range[500]+2,3],PrimeNu[#]==PrimeOmega[#]==5&] (* Harvey P. Dale, Jul 05 2025 *)

Extensions

Definition clarified by Harvey P. Dale, Jul 05 2025
Previous Showing 21-30 of 40 results. Next