A380530 Positions of records in A380528.
1, 4, 10, 42, 366, 3246, 37266, 631266, 11563926, 271591926
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
29 is in the sequence because 29 is prime and mu(30)=-1.
Select[Prime[Range[300]],MoebiusMu[#+1]==-1&] (* Harvey P. Dale, Feb 28 2013 *)
a(1) = A000040(1) = 2. a(2) = A006881(2) = 10. a(3) = A007304(3) = 66. a(4) = A046386(4) = 462. a(5) = A046387(5) = 4290. a(6) = A067885(6) = 53130. a(7) = A123321(7) = 903210. a(8) = A123322(8) = 17687670. a(9) = A115343(9) = 406816410. a(10) = A281222(10) = 11125544430.
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A340467(n): if n == 1: return 2 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 31 2024
Map[Times @@ NextPrime[#, Range[0, 4]] &, Select[Prime@ Range[2^16], AllTrue[{# + 4, # + 6, # + 10, # + 12}, PrimeQ] &]]
fQ[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[#] MoebiusMu[n/#]^2 & /@ d) == -1]; Select[Range@17000, fQ] (* Robert G. Wilson v, Dec 28 2016 *)
isok(n) = sumdiv(n, d, moebius(d)*moebius(n/d)^2) == -1; \\ Michel Marcus, Nov 08 2013
is(n)=if(!issquare(n,&n), return(0)); my(f=factor(n)[,2]); #f%2 && vecmax(f)==1 \\ Charles R Greathouse IV, Oct 16 2015
Map[Times @@ NextPrime[#, Range[0, 4]] &, Select[Prime@ Range[2^16], AllTrue[{# + 2, # + 6, # + 8, # + 12}, PrimeQ] &]]
a(n) = my (c=a279690(n)); my (k=n+1); while (c!=a279690(k), k++); k
Select[Range@ 161, And[SquareFreeQ@ #, PrimeQ@ PrimeNu@ #] &] (* Michael De Vlieger, Sep 29 2019 *)
isok(n) = issquarefree(n) && isprime(omega(n)); \\ Michel Marcus, Sep 27 2019
32890 = 2*5*11*13*23 = 115(5*115-3)/2. 48790 = 2*5*7*17*41 = 140(5*140-3)/2. 102718 = 2*7*11*23*29 = 203(5*203-3)/2. 167314 = 2*7*17*19*37 = 259(5*259-3)/2.
f:= proc(n) local k, F; k:= n*(5*n-3)/2; F:= ifactors(k)[2]; if F[..,2] = [1,1,1,1,1] then k fi end proc: map(f, [$1..2000]); # Robert Israel, Jul 29 2025
Select[Table[n*(5*n - 3)/2, {n, 1, 1000}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1, 1} &] (* Amiram Eldar, Apr 17 2022 *)
from sympy import factorint from itertools import count, islice def agen(): for h in (n*(5*n-3)//2 for n in count(1)): f = factorint(h, multiple=True) if len(f) == len(set(f)) == 5: yield h print(list(islice(agen(), 34))) # Michael S. Branicky, May 28 2022
7770 = 35*36*37/6 = 2*3*5*7*37 14190 = 43*44*45/6 = 2*3*5*11*43 98770 = 83*84*85/6 = 2*5*7*17*83 121485 = 89*90*91/6 = 3*5*7*13*89
q:= n-> is(map(x-> x[2], ifactors(n)[2])=[1$5]): select(q, [n*(n+1)*(n+2)/6$n=1..500])[]; # Alois P. Heinz, Jun 15 2022
Select[Table[n*(n+1)*(n+2)/6, {n, 1, 400}], FactorInteger[#][[;;, 2]] == {1, 1, 1, 1, 1} &] (* Amiram Eldar, Jun 15 2022 *) Select[Binomial[Range[500]+2,3],PrimeNu[#]==PrimeOmega[#]==5&] (* Harvey P. Dale, Jul 05 2025 *)
Comments