cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 152 results. Next

A376366 The number of non-unitary prime divisors of the cubefree numbers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 21 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # < 3 &], Count[e, 2], Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] > 2, is = 0; break)); if(is, print1(#select(x -> x == 2, e), ", ")));}

Formula

a(n) = A056170(A004709(n)).
a(n) = A369427(A004709(n)).
Sum_{A004709(k) <= x} a(k) = c * x + O(sqrt(x)/log(x)), where c = (1/zeta(3)) * Sum_{p prime} ((p-1)/(p^3-1)) = 0.24833233043359932037... (Das et al., 2025).
a(n) = log_2(A382419(n)). - Amiram Eldar, Mar 25 2025
Sum_{k=1..n} a(k) ~ c * n, where c = Sum_{p prime} ((p-1)/(p^3-1)) = 0.29850959207541746... - Vaclav Kotesovec, Mar 25 2025 (according to the above formula)
From Amiram Eldar, Apr 05 2025: (Start)
a(n) = A046660(A004709(n)).
a(n) = A368779(n) - A376365(n). (End)

A195087 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 3.

Original entry on oeis.org

16, 48, 72, 80, 81, 108, 112, 162, 176, 200, 208, 240, 272, 304, 336, 360, 368, 392, 405, 464, 496, 500, 504, 528, 540, 560, 567, 592, 600, 624, 625, 656, 675, 688, 752, 756, 792, 810, 816, 848, 880, 891, 900, 912, 936, 944, 968, 976
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (Sum_{p prime} 1/(p^3*(p+1)) + Sum_{p != q primes} 1/(p^2*(p+1)*q*(q+1)) + Sum_{p < q < r primes} 1/(p*(p+1)*q*(q+1)*r*(r+1)))/zeta(2) = 0.04761... . - Amiram Eldar, Sep 03 2022

Crossrefs

Programs

  • Haskell
    a195087 n = a195087_list !! (n-1)
    a195087_list = filter ((== 3) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[1000],PrimeOmega[#]-PrimeNu[#]==3&]
  • PARI
    is(n)=bigomega(n)-omega(n)==3 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A001222(a(n)) - A001221(a(n)) = 3.
A046660(a(n)) = 3. - Reinhard Zumkeller, Nov 29 2015

A195089 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 5.

Original entry on oeis.org

64, 192, 288, 320, 432, 448, 648, 704, 729, 800, 832, 960, 972, 1088, 1216, 1344, 1440, 1458, 1472, 1568, 1856, 1984, 2000, 2016, 2112, 2160, 2240, 2368, 2400, 2496, 2624, 2752, 3008, 3024, 3168, 3240, 3264, 3392, 3520, 3600, 3645, 3648, 3744, 3776, 3872, 3904
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0118439..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195089 n = a195089_list !! (n-1)
    a195089_list = filter ((== 5) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[4000],PrimeOmega[#]-PrimeNu[#]==5&]
  • PARI
    is(n)=bigomega(n)-omega(n)==5 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 5. - Reinhard Zumkeller, Nov 29 2015

A195091 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 7.

Original entry on oeis.org

256, 768, 1152, 1280, 1728, 1792, 2592, 2816, 3200, 3328, 3840, 3888, 4352, 4864, 5376, 5760, 5832, 5888, 6272, 6561, 7424, 7936, 8000, 8064, 8448, 8640, 8748, 8960, 9472, 9600, 9984, 10496, 11008, 12032, 12096, 12672, 12960, 13056, 13122, 13568
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0029589..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195091 n = a195091_list !! (n-1)
    a195091_list = filter ((== 7) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[14000],PrimeOmega[#]-PrimeNu[#]==7&]
  • PARI
    is(n)=bigomega(n)-omega(n)==7 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 7. - Reinhard Zumkeller, Nov 29 2015

A261256 Let S_k denote the sequence of numbers j such that A001222(j) - A001221(j) = k. Then a(n) is the n-th term of S_n.

Original entry on oeis.org

4, 24, 72, 160, 432, 896, 2592, 5632, 12800, 26624, 61440, 124416, 278528, 622592, 1376256, 2949120, 5971968, 12058624, 25690112, 60817408, 130023424, 262144000, 528482304, 1107296256, 2264924160, 4586471424, 9395240960, 19864223744, 40265318400, 83751862272
Offset: 1

Views

Author

Keywords

Comments

S_0 would correspond to the squarefree numbers (A005117), that is, numbers j such that A001222(j) = A001221(j). Note that S_0 is excluded from the scheme. - Michel Marcus, Sep 21 2015

Examples

			For n = 1, S_1 = {4, 9, 12, 18, 20, 25, ...}, so a(1) = S_1(1) = 4.
For n = 2, S_2 = {8, 24, 27, 36, 40, 54, ...}, so a(2) = S_2(2) = 24.
For n = 3, S_3 = {16, 48, 72, 80, 81, 108, ...}, so a(3) = S_3(3) = 72.
For n = 4, S_4 = {32, 96, 144, 160, 216, 224, ...}, so a(4) = S_4(4) = 160.
For n = 5, S_5 = {64, 192, 288, 320, 432, 448, ...}, so a(5) = S_5(5) = 432.
		

Crossrefs

Programs

  • Haskell
    a261256 n = a257851 n (n - 1)  -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    OutSeq = {}; For[i = 1, i <= 16, i++, l = Select[Range[10^2*2^i], PrimeOmega[#] - PrimeNu[#] == i &]; AppendTo[OutSeq, l[[i]]]]; OutSeq
  • PARI
    a(n) = {ik = 1; nbk = 0; while (nbk != n, ik++; if (bigomega(ik) == omega(ik) + n, nbk++);); ik;} \\ Michel Marcus, Oct 06 2015
    

Formula

a(n+1) > 2*a(n).
a(n) >= 2^prime(n) for n < 5.
a(n) = A257851(n,n-1). - Reinhard Zumkeller, Nov 29 2015
a(n) = b(n)*2^(n+1), where b(n) consists of the values of k/2^excess(k) over odd k, sorted in ascending order. In particular, a(n) <= prime(n)*2^(n+1), with equality only when n = 2. - Charlie Neder, Jan 31 2019

Extensions

a(17)-a(21) from Jon E. Schoenfield, Sep 12 2015
More terms from Charlie Neder, Jan 31 2019

A264959 a(n) = A257851(n,n).

Original entry on oeis.org

1, 9, 27, 80, 216, 448, 1296, 2816, 6400, 13312, 30720, 62208, 139264, 311296, 688128, 1474560, 2985984, 6029312, 12845056, 30408704, 65011712, 131072000, 264241152, 553648128, 1132462080, 2293235712, 4697620480, 9932111872, 20132659200, 41875931136, 88046829568
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 29 2015

Keywords

Crossrefs

Programs

  • Haskell
    a264959 n = a257851 n n
    
  • Mathematica
    a[n_] := a[n] = Reap[For[m = 1; k = 1, k <= n+1, If[PrimeOmega[m] - PrimeNu[m] == n, Sow[m]; k++]; m++]][[2, 1]] // Last;
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 03 2021 *)
  • PARI
    a(n) = my(nb=0, k=1); until (nb == n+1, my(f=factor(k)); if (bigomega(f) - omega(f) == n, nb++); k++;); k-1; \\ Michel Marcus, Feb 05 2022

Extensions

a(21)-a(25) from Michel Marcus, Feb 05 2022
More terms from Jinyuan Wang, Feb 18 2022

A325200 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is k.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 3, 0, 2, 0, 0, 3, 2, 0, 2, 0, 1, 0, 6, 2, 0, 2, 0, 0, 4, 3, 4, 2, 0, 2, 0, 0, 6, 2, 6, 4, 2, 0, 2, 0, 0, 4, 9, 5, 4, 4, 2, 0, 2, 0, 1, 0, 15, 6, 8, 4, 4, 2, 0, 2, 0, 0, 5, 12, 12, 9, 6, 4, 4, 2, 0, 2, 0, 0, 10, 6, 21, 10, 12, 6, 4, 4, 2, 0, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Examples

			Triangle begins:
  1
  1  0
  0  2  0
  1  0  2  0
  0  3  0  2  0
  0  3  2  0  2  0
  1  0  6  2  0  2  0
  0  4  3  4  2  0  2  0
  0  6  2  6  4  2  0  2  0
  0  4  9  5  4  4  2  0  2  0
  1  0 15  6  8  4  4  2  0  2  0
  0  5 12 12  9  6  4  4  2  0  2  0
  0 10  6 21 10 12  6  4  4  2  0  2  0
  0 10 12 20 18 13 10  6  4  4  2  0  2  0
  0  5 27 20 23 16 16 10  6  4  4  2  0  2  0
  1  0 38 22 32 22 19 14 10  6  4  4  2  0  2  0
  0  6 34 38 34 35 20 22 14 10  6  4  4  2  0  2  0
  0 15 22 57 44 40 34 23 20 14 10  6  4  4  2  0  2  0
  0 20 20 71 55 54 45 32 26 20 14 10  6  4  4  2  0  2  0
  0 15 43 70 71 66 60 44 35 24 20 14 10  6  4  4  2  0  2  0
  0  6 74 64 99 83 70 65 42 38 24 20 14 10  6  4  4  2  0  2  0
Row n = 9 counts the following partitions (empty columns not shown):
  (432)   (333)    (54)      (63)      (72)       (81)        (9)
  (3321)  (441)    (621)     (6111)    (711)      (21111111)  (111111111)
  (4221)  (522)    (22221)   (222111)  (2211111)
  (4311)  (531)    (51111)   (411111)  (3111111)
          (3222)   (321111)
          (5211)
          (32211)
          (33111)
          (42111)
		

Crossrefs

Row sums are A000041. Column k = 1 is A325191. Column k = 2 is A325199.
T(n,k) = A325189(n,k) - A325188(n,k).

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otbmax[#]-otb[#]==k&]],{n,0,20},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); forpart(p=n, my(b=#p,c=0); for(i=1, #p, my(x=#p-i+p[i]); b=min(b,x); c=max(c,x)); r[c-b+1]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A366157(n) - A368986(n). - Andrew Howroyd, Jan 13 2024

A381075 Sorted positions of first appearances in A280292 (sum of prime factors minus sum of distinct prime factors).

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 32, 49, 64, 81, 121, 128, 169, 256, 289, 361, 512, 529, 625, 841, 961, 1024, 1331, 1369, 1444, 1681, 1849, 2048, 2116, 2197, 2209, 2809, 3481, 3721, 3844, 4232, 4489, 4913, 5041, 5324, 5329, 5476, 6241, 6859, 6889, 7396, 7569, 7688, 7921
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Examples

			The initial terms of A280292 are (0,0,0,2,0,0,0,4,3,0,0,2,0,0,0,6,0,3,0,2,0,0,0,4,5,0,6,2,...), wherein a value appears for the first time at positions 1, 4, 8, 9, 16, 25, ...
		

Crossrefs

For length instead of sum we have A151821.
The unsorted version is A280286, firsts of A280292.
For indices instead of factors we have A380957 (unsorted A380956), firsts of A380955.
A multiplicative version is A380988 (unsorted A380987), firsts of A290106.
For prime multiplicities instead of factors see A380989, firsts of A380958.
For product instead of sum we have A381076, sorted firsts of A066503.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A364916 counts partitions by (sum minus sum of distinct parts).

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
    q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,10000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
  • PARI
    f(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2] - f[j, 1]); \\ A280292
    lista(nn) = my(v=Set(vector(nn, i, f(i))), list=List()); for (i=1, #v, my(k=1); while(f(k) != v[i], k++); listput(list, k)); vecsort(Vec(list)); \\ Michel Marcus, Apr 15 2025

Formula

Sorted positions of first appearances in A001414 - A008472.

A162511 Multiplicative function with a(p^e) = (-1)^(e-1).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1
Offset: 1

Views

Author

Gerard P. Michon, Jul 05 2009

Keywords

Crossrefs

Programs

  • Maple
    A162511 := proc(n)
        local a,f;
        a := 1;
        for f in ifactors(n)[2] do
            a := a*(-1)^(op(2,f)-1) ;
        end do:
        return a;
    end proc: # R. J. Mathar, May 20 2017
  • Mathematica
    a[n_] := (-1)^(PrimeOmega[n] - PrimeNu[n]); Array[a, 100] (* Jean-François Alcover, Apr 24 2017, after Reinhard Zumkeller *)
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,-(-1)^f[i]) \\ Charles R Greathouse IV, Mar 09 2015
    
  • Python
    from sympy import factorint
    from operator import mul
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [(-1)**(f[i] - 1) for i in f]) # Indranil Ghosh, May 20 2017
    
  • Python
    from functools import reduce
    from sympy import factorint
    def A162511(n): return -1 if reduce(lambda a,b:~(a^b), factorint(n).values(),0)&1 else 1 # Chai Wah Wu, Jan 01 2023

Formula

Multiplicative function with a(p^e)=(-1)^(e-1) for any prime p and any positive exponent e.
a(n) = 1 when n is a squarefree number (A005117).
From Reinhard Zumkeller, Jul 08 2009 (Start)
a(n) = (-1)^(A001222(n)-A001221(n)).
a(A162644(n)) = +1; a(A162645(n)) = -1. (End)
a(n) = A076479(n) * A008836(n). - R. J. Mathar, Mar 30 2011
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A307868. - Amiram Eldar, Sep 18 2022
Dirichlet g.f.: Product_{p prime} ((p^s + 2)/(p^s + 1)). - Amiram Eldar, Oct 26 2023

A195069 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 10.

Original entry on oeis.org

2048, 6144, 9216, 10240, 13824, 14336, 20736, 22528, 25600, 26624, 30720, 31104, 34816, 38912, 43008, 46080, 46656, 47104, 50176, 59392, 63488, 64000, 64512, 67584, 69120, 69984, 71680, 75776, 76800, 79872, 83968, 88064, 96256, 96768, 101376, 103680, 104448
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0003698..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 25 2024

Examples

			14336 = 2^11 * 7^1, so it has 12 prime factors (counted with multiplicity) and 2 distinct prime factors, and 12-2 = 10.
		

Crossrefs

Programs

  • Haskell
    a195069 n = a195069_list !! (n-1)
    a195069_list = filter ((== 10) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
    
  • Maple
    op(select(n->bigomega(n)-nops(factorset(n))=10, [$1..104448])); # Paolo P. Lava, Jul 03 2018
  • Mathematica
    Select[Range[200000], PrimeOmega[#] - PrimeNu[#] == 10&]
  • PARI
    isok(n) = bigomega(n) - omega(n) == 10; \\ Michel Marcus, Jul 03 2018

Formula

A046660(a(n)) = 10. - Reinhard Zumkeller, Nov 29 2015
Previous Showing 41-50 of 152 results. Next