cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-56 of 56 results.

A247540 a(n) = 2*a(n-1) - 3*a(n-1)^2 / a(n-2), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, -1, -5, 65, 2665, -322465, -117699725, 128645799425, 422086867913425, -4153756867136015425, -122639671502190855423125, 10862563623963550637392450625, 2886411268723218638918559372525625, -2300934493386669693418957707961899750625
Offset: 0

Views

Author

Michael Somos, Sep 18 2014

Keywords

Crossrefs

Cf. A046717.

Programs

  • Haskell
    a247540 n = a247540_list !! n
    a247540_list = 1 : 1 : zipWith (-)
       (map (* 2) xs) (zipWith div (map ((* 3) . (^ 2)) xs) a247540_list)
       where xs = tail a247540_list
    -- Reinhard Zumkeller, Sep 20 2014
    
  • Magma
    I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) - 3*Self(n-1)^2/Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 04 2018
  • Mathematica
    RecurrenceTable[{a[n] == 2*a[n-1] - 3*a[n-1]^2/a[n-2], a[0]==1, a[1]==1}, a, {n,0,30}] (* G. C. Greubel, Aug 04 2018 *)
  • PARI
    {a(n) = if( n<0, 1 / prod(k=1, -n, (1 + (-3)^-k) / 2), prod(k=0, n-1, (1 + (-3)^k) / 2))};
    

Formula

0 = a(n)*(-2*a(n+1) + a(n+2)) + a(n+1)*(+3*a(n+1)) for all n in Z.
a(n+1) = a(n) * (-1)^n * A046717(n) for all n in Z.
a(1-n) = (-3)^(n*(n-1)/2) / a(n) for all n in Z.

A247584 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5) with a(0) = a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 13, 43, 113, 253, 509, 969, 1849, 3719, 8009, 18027, 40897, 91257, 198697, 423777, 894081, 1886011, 4007301, 8594411, 18560081, 40181493, 86872293, 187197193, 402060793, 861827743, 1846685729, 3960390059, 8504658049, 18283290609, 39325827729
Offset: 0

Views

Author

Alexander Samokrutov, Sep 20 2014

Keywords

Comments

a(n)/a(n-1) tends to 2.1486... = 1 + 2^(1/5), the real root of the polynomial x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x - 3.
If x^5 = 2 and n >= 0, then there are unique integers a, b, c, d, g such that (1 + x)^n = a + b*x + c*x^2 + d*x^3 + g*x^4. The coefficient a is a(n) (from A052102). - Alexander Samokrutov, Jul 11 2015
If x=a(n), y=a(n+1), z=a(n+2), s=a(n+3), t=a(n+4) then x, y, z, s, t satisfies Diophantine equation (see link). - Alexander Samokrutov, Jul 11 2015

Crossrefs

Cf. A005531.

Programs

  • Magma
    [n le 5 select 1 else 5*Self(n-1) -10*Self(n-2) +10*Self(n-3) -5*Self(n-4) +3*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jul 11 2015
    
  • Maple
    m:=50; S:=series( (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 15 2021
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,3}, {1,1,1,1,1}, 50] (* Vincenzo Librandi, Jul 11 2015 *)
  • Maxima
    makelist(sum(2^k*binomial(n,5*k), k, 0, floor(n/5)), n, 0, 50); /* Alexander Samokrutov, Jul 11 2015 */
    
  • PARI
    Vec((1-x)^4/(1-5*x+10*x^2-10*x^3+5*x^4-3*x^5) + O(x^100)) \\ Colin Barker, Sep 22 2014
    
  • Sage
    [sum(2^j*binomial(n, 5*j) for j in (0..n//5)) for n in (0..50)] # G. C. Greubel, Apr 15 2021

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5).
a(n) = Sum_{k=0...floor(n/5)} (2^k*binomial(n,5*k)). - Alexander Samokrutov, Jul 11 2015
G.f.: (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5). - Colin Barker, Sep 22 2014

A292848 a(n) is the smallest prime of form (1/2)*((1 + sqrt(2*n))^k + (1 - sqrt(2*n))^k).

Original entry on oeis.org

3, 5, 7, 113, 11, 13, 43, 17, 19, 61, 23, 73, 79, 29, 31, 97, 103, 37, 1241463763, 41, 43, 664973, 47, 2593, 151, 53, 163, 14972833, 59, 61, 4217, 193, 67, 23801, 71, 73, 223, 229, 79, 241, 83, 7561, 61068909859, 89, 271, 277, 283, 97, 10193, 101, 103, 313
Offset: 1

Views

Author

XU Pingya, Sep 24 2017

Keywords

Comments

When 2n + 1 = p is prime, a(n) = p.
From Robert Israel, Sep 26 2017: (Start)
a(n) is also the first prime in the sequence defined by the recursion x(k+2)=2*x(k+1)+(2*n-1)*x(k) with x(0)=x(1)=1.
a(307), if it exists, has more than 10000 digits.
It appears that x(n*k) is divisible by x(k) if n is odd. Thus a(n) (if it exists) must be x(k) where k is either a power of 2 or a prime. (End)

Examples

			For k = {1, 2, 3, 4}, (1/2)((1 + sqrt(8))^k + (1 - sqrt(8))^k) = {1, 9, 25, 113}. 113 is prime, so a(4) = 113.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local a,b,t;
      a:= 1; b:= 1;
      do
        t:= a; a:= 2*a + (2*n-1)*b;
        if isprime(a) then return a fi;
        b:= t;
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 26 2017
  • Mathematica
    f[n_, k_] := ((1 + Sqrt[n])^k + (1 - Sqrt[n])^k)/2;
    Table[k = 1; While[! PrimeQ[Expand@f[2n, k]], k++]; Expand@f[2n, k], {n, 52}]

A373547 Triangle read by rows: T(n,k) = 4^k*binomial(n+k, n-k) with 0 <= k <= n.

Original entry on oeis.org

1, 1, 4, 1, 12, 16, 1, 24, 80, 64, 1, 40, 240, 448, 256, 1, 60, 560, 1792, 2304, 1024, 1, 84, 1120, 5376, 11520, 11264, 4096, 1, 112, 2016, 13440, 42240, 67584, 53248, 16384, 1, 144, 3360, 29568, 126720, 292864, 372736, 245760, 65536, 1, 180, 5280, 59136, 329472, 1025024, 1863680, 1966080, 1114112, 262144
Offset: 0

Views

Author

Stefano Spezia, Jun 09 2024

Keywords

Comments

T(n,k) is the number of occurrences of the periodic substring (01)^k in the periodic string (0011)^n (see Proposition 4.3 at page 6 in Fang).
The word (w_1, w_2, ..., w_r)^m is defined as the word obtained by concatenating (w_1, w_2, ..., w_r) m times.
A word w' = (w'1, w'_2, ..., w'_s) is said be a subword of a given word w = (w_1, w_2, ..., w_r), if there is some set P = {p_1 < ... < p_s} of integers from 1 to r satisfying w{p_j} = w'_j for all 1 <= j <= s, and we call the set P an occurrence of w' in w (see Preliminaries section at pp. 2-3 in Fang).

Examples

			The triangle begins as:
  1;
  1,  4;
  1, 12,   16;
  1, 24,   80,   64;
  1, 40,  240,  448,   256;
  1, 60,  560, 1792,  2304,  1024;
  1, 84, 1120, 5376, 11520, 11264, 4096;
  ...
T(2,1) = 12 since there are 12 occurrences of (01)^1 = 01 in (0011)^2 = 00110011: {1, 3}, {1, 4}, {1, 7}, {1, 8}, {2, 3}, {2, 4}, {2, 7}, {2, 8}, {5, 7}, {5, 8}, {6, 7}, {6, 8}.
		

Crossrefs

Cf. A000012 (k=0), A000302 (diagonal), A001653 (row sums), A046092 (k=1), A046717, A085478, A130810, A130812, A373628.

Programs

  • Mathematica
    T[n_,k_]:=4^k Binomial[n+k,n-k]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten (* or *)
    T[n_,k_]:=SeriesCoefficient[(1-x)/((1-x)^2-4x y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten

Formula

G.f.: (1 - x)/((1 - x)^2 - 4*x*y).
T(n,k) = A000302(k)*A085478(n,k).
Sum_{k=0..n} T(n-k,k) = A046717(n).
T(n,2) = A130810(n+2).
T(n,3) = A130812(n+3).

A067763 Square array read by antidiagonals of base n numbers written as 122...222 with k 2's (and a suitable interpretation for n=0, 1 or 2).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 7, 10, 5, 1, 2, 9, 22, 17, 6, 1, 2, 11, 46, 53, 26, 7, 1, 2, 13, 94, 161, 106, 37, 8, 1, 2, 15, 190, 485, 426, 187, 50, 9, 1, 2, 17, 382, 1457, 1706, 937, 302, 65, 10, 1, 2, 19, 766, 4373, 6826, 4687, 1814, 457, 82, 11, 1, 2, 21, 1534, 13121
Offset: 0

Views

Author

Henry Bottomley, Feb 06 2002

Keywords

Comments

Start with a node; step one is to connect that node to n+1 new nodes so that it is of degree n+1; further steps are to connect each existing node of degree 1 to n new nodes so that it is of degree n+1; T(n,k) is the total number of nodes after k steps.

Examples

			Rows start: 1,2,2,2,2,2,...; 1,3,5,7,9,11,...; 1,4,10,22,46,94,...; 1,5,17,53,161,485,... T(3,2) =122 base 3 =17.
		

Crossrefs

Rows include A040000, A005408, A033484, A048473, A020989, A057651, A061801 etc. For negative n (not shown) absolute values of rows would effectively include A000012, A014113, A046717.

Formula

T(n, k) =((n+1)*n^k-2)/(n-1) [with T(1, k)=2k+1] =n*T(n, k-1)+2 =(n+1)*T(n, k-1)-n*T(n, k-2) =T(n, k-1)+(1+1/n)*n^k =A055129(k, n)+A055129(k-1, n). Coefficient of x^k in expansion of (1+x)/((1-x)(1-nx)).

A111009 Starting with the fraction 1/1, the prime numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 4 times bottom to get the new top.

Original entry on oeis.org

5, 13, 41, 1093, 797161, 21523361, 926510094425921, 1716841910146256242328924544641, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013
Offset: 1

Views

Author

Cino Hilliard, Oct 02 2005

Keywords

Comments

Or, A046717(n) is prime.
Is this sequence infinite?

References

  • Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p 16.

Crossrefs

Cf. A088553. [From R. J. Mathar, Aug 18 2008]

Programs

  • Mathematica
    Select[NestList[(Numerator[#]+4*Denominator[#])/(Numerator[#]+Denominator[#])&,1/1,200]//Numerator,PrimeQ] (* Harvey P. Dale, Jan 04 2024 *)
  • PARI
    primenum(n,k,typ) = \ k=mult,typ=1 num,2 denom. ouyput prime num or denom. { local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v),print1(v","); ) ); print(); print(a/b+.) }

Formula

Given c(0)=1, b(0)=1 then for i=1, 2, .. c(i)/b(i) = (c(i-1)+4*b(i-1)) /(c(i-1) + b(i-1)).
A046717 INTERSECT A000040. [From R. J. Mathar, Aug 18 2008]

Extensions

Edited by N. J. A. Sloane, Aug 23 2008
Previous Showing 51-56 of 56 results.