cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 123 results. Next

A376519 Positions of terms not appearing for the first time in the first differences (A053289) of perfect-powers (A001597).

Original entry on oeis.org

8, 14, 15, 20, 22, 25, 26, 31, 40, 46, 52, 59, 68, 75, 88, 96, 102, 110, 111, 112, 114, 128, 136, 144, 145, 162, 180, 188, 198, 216, 226, 235, 246, 264, 265, 275, 285, 295, 305, 316, 317, 325, 328, 338, 350, 360, 367, 373, 385, 406, 416, 417, 419, 431, 443
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2024

Keywords

Examples

			The perfect powers (A001597) are:
  1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
with first differences (A053289):
  3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, ...
with positions of latter appearances (A376519):
  8, 14, 15, 20, 22, 25, 26, 31, 40, 46, 52, 59, 68, 75, 88, 96, 102, 110, 111, ...
		

Crossrefs

These are the sorted positions of latter appearances in A053289 (union A023055).
The complement is A376268.
A053707 lists first differences of consecutive prime-powers.
A333254 lists run-lengths of differences between consecutive primes.
Other families of numbers and their first differences:
For prime numbers (A000040) we have A001223.
For composite numbers (A002808) we have A073783.
For nonprime numbers (A018252) we have A065310.
For perfect powers (A001597) we have A053289.
For non-perfect-powers (A007916) we have A375706.
For squarefree numbers (A005117) we have A076259.
For nonsquarefree numbers (A013929) we have A078147.
For prime-powers inclusive (A000961) we have A057820.
For prime-powers exclusive (A246655) we have A057820(>1).
For non-prime-powers inclusive (A024619) we have A375735.
For non-prime-powers exclusive (A361102) we have A375708.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    q=Differences[Select[Range[1000],perpowQ]];
    Select[Range[Length[q]],MemberQ[Take[q,#-1],q[[#]]]&]

A378368 Positions (in A001597) of consecutive perfect powers with a unique prime between them.

Original entry on oeis.org

15, 20, 22, 295, 1257
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root.
The perfect powers themselves are given by A001597(a(n)) = A378355(n).

Examples

			The 15th and 16th perfect powers are 125 and 128, and 127 is the only prime between them, so 15 is in the sequence.
		

Crossrefs

These are the positions of 1 in A080769.
The next prime after A001597(a(n)) is A178700(n).
For no (instead of one) perfect powers we have A274605.
Swapping 'prime' and 'perfect power' gives A377434, unique case of A377283.
The next perfect power after A001597(a(n)) is A378374(n).
For prime powers instead of perfect powers we have A379155.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A081676 gives the greatest perfect power <= n.
A377432 counts perfect powers between primes, see A377436, A377466.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    v=Select[Range[1000],perpowQ];
    Select[Range[Length[v]-1],Length[Select[Range[v[[#]],v[[#+1]]],PrimeQ]]==1&]

Formula

We have A001597(a(n)) = A378355(n) < A178700(n) < A378374(n).

A378373 Number of composite numbers (A002808) between consecutive nonsquarefree numbers (A013929), exclusive.

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 2, 0, 1, 0, 1, 3, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 2, 2, 1, 0, 2, 0, 1, 3, 0, 1, 3, 0, 0, 0, 1, 2, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 1, 3, 2, 0, 0, 0, 0, 2, 2, 1, 0, 2, 0, 1, 0, 1, 0, 2, 2, 3, 0, 1, 2, 0, 0, 3, 2, 0, 2, 3, 3, 2, 0, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2024

Keywords

Comments

All terms are 0, 1, 2, or 3 (cf. A078147).
The inclusive version is a(n) + 2.
The nonsquarefree numbers begin: 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, ...

Examples

			The composite numbers counted by a(n) form the following set partition of A120944:
{6}, {}, {10}, {14,15}, {}, {}, {21,22}, {}, {26}, {}, {30}, {33,34,35}, {38,39}, ...
		

Crossrefs

For prime (instead of nonsquarefree) we have A046933.
For squarefree (instead of nonsquarefree) we have A076259(n)-1.
For prime power (instead of nonsquarefree) we have A093555.
For prime instead of composite we have A236575.
For nonprime prime power (instead of nonsquarefree) we have A378456.
For perfect power (instead of nonsquarefree) we have A378614, primes A080769.
A002808 lists the composite numbers.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A073247 lists squarefree numbers with nonsquarefree neighbors.
A120944 lists squarefree composite numbers.
A377432 counts perfect-powers between primes, zeros A377436.
A378369 gives distance to the next nonsquarefree number (A120327).

Programs

  • Mathematica
    v=Select[Range[100],!SquareFreeQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]

A379156 Positions in A246655 (prime powers) of terms q such that there is no prime between q and the next prime power.

Original entry on oeis.org

6, 14, 41, 359, 3589
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2024

Keywords

Comments

The powers of primes themselves are 8, 25, 121, 2187, 32761, ... (A068315).

Crossrefs

The prime powers themselves are A068315, for just one prime A379157.
For perfect powers instead of prime powers we have A274605.
Positions of 0 in A366835.
For just one prime we have A379155, for perfect powers A378368.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A131605 finds perfect powers that are not prime powers.
A246655 lists the prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Mathematica
    v=Select[Range[100],PrimePowerQ];
    Select[Range[Length[v]-1],FreeQ[Range[v[[#]],v[[#+1]]],_?PrimeQ]&]

Formula

A246655(a(n)) = A068315(n).

A054264 Concatenation of composite numbers between the n-th prime and the following prime.

Original entry on oeis.org

4, 6, 8910, 12, 141516, 18, 202122, 2425262728, 30, 3233343536, 383940, 42, 444546, 4849505152, 5455565758, 60, 6263646566, 686970, 72, 7475767778, 808182, 8485868788, 90919293949596, 9899100, 102, 104105106, 108, 110111112
Offset: 2

Views

Author

Patrick De Geest, Apr 15 2000

Keywords

Crossrefs

Programs

  • Mathematica
    FromDigits[Flatten[IntegerDigits/@(Range[#[[1]]+1,#[[2]]-1])]]&/@Partition[ Prime[Range[2,30]],2,1] (* Harvey P. Dale, Mar 04 2014 *)
  • PARI
    a(n)=my(r=prime(n)+1); fromdigits(concat(vector(nextprime(r)-r, i, digits(r+i-1)))) \\ Andrew Howroyd, Aug 14 2024

Extensions

Offset changed and name edited by Andrew Howroyd, Aug 14 2024

A054266 Sum of composite numbers between prime p and nextprime(p) is palindromic.

Original entry on oeis.org

3, 5, 109, 193, 281, 509, 661, 827, 857, 1439, 2111, 3433, 3889, 3967, 4549, 6661, 7001, 8467, 10099, 17203, 18583, 21011, 21611, 23831, 24847, 25117, 26261, 26497, 26861, 28181, 29587, 30497, 31307, 47569, 47869, 49789, 53939, 54139, 66361
Offset: 1

Views

Author

Patrick De Geest, Apr 15 2000

Keywords

Examples

			a(4)=193 since between 193 and next prime 197 we get the palindromic sum 194 + 195 + 196 = 585.
		

Crossrefs

Programs

  • Mathematica
    okQ[l_]:=Module[{x=IntegerDigits[Total[Range[First[l]+1, Last[l]-1]]]},x==Reverse[x]];Transpose[Select[Partition[ Prime[Range[2,6700]],2,1],okQ]][[1]] (* Harvey P. Dale, Mar 18 2011 *)

Extensions

Corrected and extended b-file by Chai Wah Wu, Feb 25 2018

A179067 Orders of consecutive clusters of twin primes.

Original entry on oeis.org

1, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Franz Vrabec, Jun 27 2010

Keywords

Comments

For k>=1, 2k+4 consecutive primes P1, P2, ..., P2k+4 defining a cluster of twin primes of order k iff P2-P1 <> 2, P4-P3 = P6-P5 = ... = P2k+2 - P2k+1 = 2, P2k+4 - P2k+3 <> 2.
Also the lengths of maximal runs of terms differing by 2 in A029707 (leading index of twin primes), complement A049579. - Gus Wiseman, Dec 05 2024

Examples

			The twin prime cluster ((101,103),(107,109)) of order k=2 stems from the 2k+4 = 8 consecutive primes (89, 97, 101, 103, 107, 109, 113, 127) because 97-89 <> 2, 103-101 = 109-107 = 2, 127-113 <> 2.
From _Gus Wiseman_, Dec 05 2024: (Start)
The leading indices of twin primes are:
  2, 3, 5, 7, 10, 13, 17, 20, 26, 28, 33, 35, 41, 43, 45, 49, 52, ...
with maximal runs of terms differing by 2:
  {2}, {3,5,7}, {10}, {13}, {17}, {20}, {26,28}, {33,35}, {41,43,45}, {49}, {52}, ...
with lengths a(n).
(End)
		

Crossrefs

Cf. A077800.
A000040 lists the primes, differences A001223 (run-lengths A333254, A373821).
A006512 gives the greater of twin primes.
A029707 gives the leading index of twin primes, complement A049579.
A038664 finds the first prime gap of length 2n.
A046933 counts composite numbers between primes.

Programs

  • Maple
    R:= 1: count:= 1: m:= 0:
    q:= 5: state:= 1:
    while count < 100 do
     p:= nextprime(q);
     if state = 1 then
        if p-q = 2 then state:= 2; m:= m+1;
        else
          if m > 0 then R:= R,m; count:= count+1; fi;
          m:= 0
        fi
     else state:= 1;
     fi;
     q:= p
    od:
    R; # Robert Israel, Feb 07 2023
  • Mathematica
    Length/@Split[Select[Range[2,100],Prime[#+1]-Prime[#]==2&],#2==#1+2&] (* Gus Wiseman, Dec 05 2024 *)
  • PARI
    a(n)={my(o,P,L=vector(3));n++;forprime(p=o=3,,L=concat(L[2..3],-o+o=p);L[3]==2||next;L[1]==2&&(P=concat(P,p))&&next;n--||return(#P);P=[p])} \\ M. F. Hasler, May 04 2015

Extensions

More terms from M. F. Hasler, May 04 2015

A204099 Number of integers between successive twin prime pairs.

Original entry on oeis.org

0, 3, 3, 9, 9, 15, 9, 27, 3, 27, 9, 27, 9, 3, 27, 9, 27, 9, 27, 33, 69, 9, 27, 57, 45, 27, 15, 21, 15, 147, 9, 3, 27, 21, 135, 9, 15, 9, 27, 57, 75, 45, 9, 9, 15, 105, 21, 27, 3, 117, 9, 45, 27, 21, 63, 81, 3, 51, 15, 45, 27, 51, 3, 21, 15, 9, 93, 27, 39
Offset: 1

Views

Author

Michel Lagneau, Jan 10 2012

Keywords

Comments

a(n) is divisible by 3.

Examples

			a(1) = 0 because (3,5) is adjacent to (5,7); a(2) = 3 because the numbers 8, 9 and 10 are between (5,7) and (11,13), ...
		

Crossrefs

Programs

  • Maple
    T:=array(1..100,1..2):k:=0:for n from 1 to 1000 do:p1:=ithprime(n):p2:=ithprime(n+1):if p2-p1 = 2 then k:=k+1:T[k,1]:=p1:T[k,2]:=p2:else fi:od: for p from 2 to k do:x:= T[p+1,1]- T[p,2]: printf(`%d, `,x-1):od:
  • Mathematica
    Module[{tr=Transpose[Select[Partition[Prime[Range[450]],2,1],#[[2]]- #[[1]] == 2&]],fir,las},fir=Rest[tr[[1]]];las=Most[tr[[2]]];Flatten[Abs[ Differences/@ Thread[{fir,las}]]]-1/.{-1->0}] (* Harvey P. Dale, Jun 11 2014 *)

Formula

a(n) = A167132(n) - 1.
a(n) = A063091(n+1) - A063091(n) - 3.

A378456 Number of composite numbers between consecutive nonprime prime powers (exclusive).

Original entry on oeis.org

1, 0, 4, 5, 1, 2, 12, 11, 12, 31, 3, 1, 32, 59, 11, 25, 46, 13, 125, 14, 80, 88, 94, 103, 52, 261, 35, 267, 147, 172, 120, 9, 9, 163, 355, 279, 313, 207, 329, 347, 376, 108, 257, 805, 283, 262, 25, 917, 242, 1081, 702, 365, 752, 389, 251, 535, 1679, 877, 447
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2024

Keywords

Comments

The inclusive version is a(n) + 2.
Nonprime prime powers (A246547) begin: 4, 8, 9, 16, 25, 27, 32, 49, ...

Examples

			The initial terms count the following composite numbers:
  {6}, {}, {10,12,14,15}, {18,20,21,22,24}, {26}, {28,30}, ...
The composite numbers for a(77) = 6 together with their prime indices are the following. We have also shown the nonprime prime powers before and after:
  32761: {42,42}
  32762: {1,1900}
  32763: {2,19,38}
  32764: {1,1,1028}
  32765: {3,847}
  32766: {1,2,14,31}
  32767: {4,11,36}
  32768: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

For prime instead of composite we have A067871.
For nonsquarefree numbers we have A378373, for primes A236575.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A002808 lists the composite numbers.
A031218 gives the greatest prime-power <= n.
A046933 counts composite numbers between primes.
A053707 gives first differences of nonprime prime powers.
A080101 = A366833 - 1 counts prime powers between primes.
A246655 lists the prime-powers not including 1, complement A361102.
A345531 gives the nearest prime power after prime(n) + 1, difference A377281.
Cf. A377286, A377287, A377288 (primes A053706).

Programs

  • Mathematica
    nn=1000;
    v=Select[Range[nn],PrimePowerQ[#]&&!PrimeQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]

A054267 Sum of composite numbers between prime p and nextprime(p) is palindromic with restriction 'p + 1 <> sum'.

Original entry on oeis.org

109, 193, 509, 661, 1439, 3433, 3889, 3967, 4549, 6661, 7001, 8467, 10099, 17203, 18583, 24847, 25117, 26497, 29587, 30497, 31307, 47569, 47869, 49789, 53939, 54139, 66361, 67061, 70901, 71011, 102199, 132229, 158269, 171179, 185699
Offset: 0

Views

Author

Patrick De Geest, Apr 15 2000

Keywords

Examples

			a(4)=661 since between 661 and next prime 673 we get the palindromic sum 662 + 663 + 664 + 665 + 666 + 667 + 668 + 669 + 670 + 671 + 672 = 7337.
		

Crossrefs

Previous Showing 81-90 of 123 results. Next