cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A144730 a(n) is the smallest positive integer m such that b * (Product_{k=1..n} a(k)) + 1 is prime, with b = 7.

Original entry on oeis.org

4, 7, 13, 19, 33, 35, 36, 43, 48, 55, 59, 62, 87, 129, 149, 153, 159, 190, 228, 231, 245, 265, 266, 269, 284, 300, 329, 331, 340, 347, 372, 432, 449, 450, 461, 485, 496, 500, 514, 544, 560, 565, 594, 598, 605, 614, 639, 677, 684, 734, 736, 794, 804, 813, 882
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008

Keywords

Crossrefs

Programs

  • Mathematica
    k = 7; a = {}; Do[If[PrimeQ[k n + 1], k = k n; AppendTo[a, n]], {n, 1, 3000}]; a (*Artur Jasinski*)

Extensions

Definition corrected by Georg Fischer, Jun 18 2021

A144731 Primes arising in A144730.

Original entry on oeis.org

29, 197, 2549, 48413, 1597597, 55915861, 2012970961, 86557751281, 4154772061441, 228512463379201, 13482235339372801, 835898591041113601, 72723177420576883201, 9381289887254417932801
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008; corrected Sep 19 2008

Keywords

Crossrefs

Extensions

Typo in definition corrected by Arkadiusz Wesolowski, Aug 22 2011

A051957 a(n) = smallest number > a(n-1) such that a(1)*a(2)*...*a(n) - 1 is a prime.

Original entry on oeis.org

3, 4, 5, 6, 8, 9, 11, 14, 18, 20, 21, 27, 28, 37, 62, 77, 86, 97, 100, 107, 109, 166, 167, 181, 196, 225, 262, 266, 268, 274, 278, 290, 305, 345, 378, 385, 414, 429, 438, 442, 498, 503, 516, 531, 573, 595, 596, 611, 640, 665, 749, 794, 870
Offset: 1

Views

Author

Felice Russo, Dec 21 1999

Keywords

Crossrefs

Programs

  • Mathematica
    seq={3};Do[n=Last[seq]+1;While[!PrimeQ[n Times@@seq-1],n++]; AppendTo[ seq,n];,{60}];seq (* Harvey P. Dale, Oct 21 2011 *)

A083769 a(1)=2; for n >= 2, a(n) = smallest even number such that a(1)*a(2)*...*a(n) + 1 is prime.

Original entry on oeis.org

2, 6, 8, 12, 16, 10, 4, 30, 26, 22, 24, 14, 50, 42, 18, 64, 46, 60, 32, 36, 20, 34, 28, 108, 48, 44, 68, 282, 90, 54, 76, 62, 180, 66, 132, 86, 74, 38, 58, 106, 120, 52, 244, 94, 100, 82, 138, 156, 98, 72, 172, 150, 248, 154, 166, 114, 162, 126, 124, 208, 222, 324, 212
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 06 2003

Keywords

Comments

Is this a permutation of the even numbers?
For any even positive integers a_1, a_2, ..., a_n, there are infinitely many even positive integers t such that a_1 a_2 ... a_n t + 1 is prime: this follows from Dirichlet's theorem on primes in arithmetic progressions. As far as I know there is no guarantee that the sequence defined here leads to a permutation of the even numbers, i.e. there might be some even integer that never appears in the sequence. However, if the partial products a_1 ... a_n grow like 2^n n!, heuristically the probability of a_1 ... a_n t + 1 being prime is on the order of 1/log(a_1 ... a_n) ~ 1/(n log n), and since sum_n 1/(n log n) diverges we might expect that there should be infinitely many n for which some a_1 ... a_n t + 1 is prime, and thus every even integer should occur. - Robert Israel, Dec 20 2012

Examples

			2+1=3, 2*6+1=13, 2*6*8+1=97, 2*6*8*12+1=1153, etc. are primes.
After 200 terms the prime is
224198929826405912196464851358435330956778558123234657623126\
069546460095464785674042966210907411841359152393200850271694\
899718487202330385432243578646330245831108247815285116235792\
875886417750289946171599027675234787802312202111702704952223\
563058999855839876391430601719636148884060097930252529666254\
756431522481046758186320659298713737639441014068272279177710\
551232067814381240340990584869121776471244800000000000000000\
00000000000000000000000000000 (449 digits). - _Robert Israel_, Dec 21 2012
		

Crossrefs

Programs

  • Maple
      N := 200: # number of terms desired
    P := 2:
    a[1] := 2:
    C := {seq(2*j, j = 2 .. 10)}:
    Cmax := 20:
    for n from 2 to N do
       for t in C do
          if isprime(t*P+1) then
            a[n]:= t;
            P:= t*P;
            C:= C minus {t};
            break;
          end if;
       end do;
       while not assigned(a[n]) do
         t0:= Cmax+2;
         Cmax:= 2*Cmax;
         C:= C union {seq(j, j=t0 .. Cmax, 2)};
         for t from t0 to Cmax by 2 do
           if isprime(t*P+1) then
             a[n]:= t;
             P:= t*P;
             C:= C minus {t};
             break;
           end if
         end do;
       end do;
    end do;
    [seq(a[n],n=1..N)];
  • Mathematica
    f[s_List] := Block[{k = 2, p = Times @@ s}, While[ MemberQ[s, k] || !PrimeQ[k*p + 1], k += 2]; Append[s, k]]; Nest[f, {2}, 62] (* Robert G. Wilson v, Dec 24 2012 *)

Extensions

More terms from David Wasserman, Nov 23 2004
Edited by N. J. A. Sloane, Dec 20 2012
Comment edited, Maple code and additional terms by Robert Israel, Dec 20 2012

A051896 a(n) = smallest palindrome > a(n-1) such that a(1)*a(2)*...*a(n) + 1 is prime with a(1) = 2.

Original entry on oeis.org

2, 3, 5, 6, 9, 55, 66, 77, 88, 161, 191, 313, 484, 494, 525, 747, 3223, 3993, 11711, 13431, 13731, 18881, 19691, 21012, 21112, 22422, 24242, 34443, 35353, 41114, 44244, 44844, 46664, 52225, 52925, 53935, 58385, 59895, 60806, 64146, 71917
Offset: 1

Views

Author

Felice Russo, Dec 21 1999

Keywords

Crossrefs

Subsequence of A002113.

Programs

  • Mathematica
    nxt[{t_,a_}]:=Module[{k=a+1},While[(!PalindromeQ[k])||CompositeQ[k*t+1],k++];{t*k,k}]; NestList[nxt,{2,2},40][[All,2]] (* Harvey P. Dale, Apr 18 2022 *)

Extensions

Initial conditions added to description by Chai Wah Wu, Apr 16 2021

A057999 a(n) is smallest prime such that a(n)-1 is a proper multiple of a(n-1)-1, with a(0) = 2.

Original entry on oeis.org

2, 3, 5, 13, 37, 73, 433, 1297, 2593, 10369, 72577, 508033, 1524097, 12192769, 73156609, 146313217, 438939649, 2633637889, 23702740993, 142216445953, 1991030243329, 37829574623233, 416125320855553, 1664501283422209, 6658005133688833, 126502097540087809, 506008390160351233
Offset: 0

Views

Author

Henry Bottomley, Nov 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[n_] := a[n] = Module[{k = 2*a[n - 1] - 2}, While[! PrimeQ[k + 1], k += (a[n - 1] - 1)]; k + 1]; Array[a, 25, 0] (* Amiram Eldar, Jan 19 2023 *)

Formula

a(n) = 1 + Product_{i=1..n} A036012(i) = a(n-1) * A036012(n) + 1 - A036012(n).

A173910 a(n) = smallest number >= a(n-1) such that a(1)*a(2)*...*a(n)+1 is prime; a(1)=2.

Original entry on oeis.org

2, 2, 3, 3, 3, 4, 5, 7, 10, 14, 15, 18, 30, 32, 46, 56, 58, 59, 84, 86, 99, 101, 103, 106, 122, 126, 128, 128, 136, 152, 157, 170, 190, 208, 281, 282, 284, 320, 393, 406, 459, 479, 526, 529, 530, 540, 559, 601, 639, 640, 709, 789, 828, 900, 917, 949, 1029, 1029
Offset: 1

Views

Author

Dmitry Kamenetsky, Mar 02 2010

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 2; a[n_] := a[n] = Module[{k = a[n - 1], r = Product[a[i], {i, 1, n - 1}]}, While[! PrimeQ[k*r + 1], k++]; k]; Array[a, 60] (* Amiram Eldar, Jan 19 2023 *)

Extensions

More terms from Amiram Eldar, Jan 19 2023

A274695 a(1) = 1; for n>1, a(n) = smallest number > a(n-1) such that a(1)*a(2)*...*a(n) + 1 is a Fibonacci number.

Original entry on oeis.org

1, 2, 6, 133, 97479304649455554938377
Offset: 1

Views

Author

Robert C. Lyons, Jul 04 2016

Keywords

Comments

a(6) = (Fibonacci(7937)-1)/(a(2)*a(3)*a(4)*a(5)) has 1633 digits and it is thus too large to be included in Data section or in a b-file. - Giovanni Resta, Jul 05 2016

Examples

			After a(1)=1 and a(2)=2, we want m, the smallest number > 2 such that 1*2*m+1 is a Fibonacci number: this is m = 6 = a(3).
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{p = Times @@ Array[a, n-1], i, m}, For[i=2, ! (IntegerQ[m = (Fibonacci[i] - 1)/p] && m > a[n-1]), i++]; m]; Array[a, 6] (* Giovanni Resta, Jul 05 2016 *)
  • Sage
    product = 1
    seq = [ product ]
    prev_fib_index = 0
    max_n = 5
    for n in range(2, max_n+1):
        fib_index = prev_fib_index + 1
        found = False
        while not found:
            fib_minus_1 = fibonacci(fib_index) - 1
            if product.divides(fib_minus_1):
                m = int( fib_minus_1 / product )
                if m > seq[-1]:
                    product = product * m
                    seq.append( m )
                    found = True
                    prev_fib_index = fib_index
                    break
            fib_index += 1
    print(seq)

Extensions

a(5) from Giovanni Resta, Jul 05 2016
Previous Showing 11-18 of 18 results.