cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A226096 Squares with doubled (4*n+2)^2.

Original entry on oeis.org

1, 4, 4, 9, 16, 25, 36, 36, 49, 64, 81, 100, 100, 121, 144, 169, 196, 196, 225, 256, 289, 324, 324, 361, 400, 441, 484, 484, 529, 576, 625, 676, 676, 729, 784, 841, 900, 900, 961, 1024, 1089, 1156, 1156, 1225, 1296, 1369
Offset: 0

Views

Author

Paul Curtz, May 26 2013

Keywords

Comments

Also nondecreasing ordered values of A226008 (except 0).
Consider A225948/A226008 ordered according to a(n): 0/1, -15/4, -3/4, 2/9, 3/16, 6/25, -7/36, 5/36, 12/49, 15/64, 20/81, ... = b(n)/a(n), and consider the sequence with period 5: 1, 64, 16, 1, 4, ... = t(n); then a(n) = 4*b(n) + t(n).
The recurrences in Formula lines are also valid for b(n).
Note that the fractions b(n)/a(n) of rank 0, 3,4,5, 8,9,10, ... = A047205:
0, 2/9, 3/16, 6/25, 12/49, 15/64, 20/81, ... are all in A226023(n).

Crossrefs

Programs

  • Mathematica
    MapIndexed[ If [Mod[First[#2], 4] == 2, Sequence @@ {#1, #1}, #1] &, Range[40]]^2 (* Jean-François Alcover, May 28 2013 *)

Formula

a(n+5) - a(n) = 8*A090223(n+4).
a(n) = 1 followed by (A090223(n) + 2)^2.
a(n) = 3*a(n-5) -3*a(n-10) +a(n-15).
G.f.: (x^9 + 3*x^8 + 5*x^6 + 7*x^5 + 7*x^4 + 5*x^3 + 3*x + 1)/((1 - x)*(1 - x^5)^2). [Ralf Stephan, May 30 2013]
a(n) = a(n-1) +2*a(n-5) -2*a(n-6) -a(n-10) +a(n-11). [Bruno Berselli, May 30 2013]
a(n) = (24*(16*floor(n/5)^2 + 8*floor(n/5) + 1) - (11 + 24*floor(n/5))*(n - 5*floor(n/5))^4 + 2*(49 + 104*floor(n/5))*(n - 5*floor(n/5))^3 - 23*(11 + 24*floor(n/5))*(n - 5*floor(n/5))^2 + 2*(119 + 280*floor(n/5))*(n - 5*floor(n/5)))/24. - Luce ETIENNE, May 08 2017

A317657 Numbers congruent to {15, 75, 95} mod 100.

Original entry on oeis.org

15, 75, 95, 115, 175, 195, 215, 275, 295, 315, 375, 395, 415, 475, 495, 515, 575, 595, 615, 675, 695, 715, 775, 795, 815, 875, 895, 915, 975, 995, 1015, 1075, 1095, 1115, 1175, 1195, 1215, 1275, 1295, 1315, 1375, 1395, 1415, 1475, 1495, 1515
Offset: 1

Views

Author

Paul Curtz, Aug 03 2018

Keywords

Comments

Numbers written in French ending in "quinze".
a(n) = 5 * (3, 15, 19, 23, 35, 39, 43, 55, 59, ... ).

Crossrefs

Programs

  • GAP
    Filtered([0..1520], n->n mod 100=15 or n mod 100=75 or n mod 100=95); # Muniru A Asiru, Aug 29 2018
  • Maple
    select(n->modp(n,100)=15 or modp(n,100)=75 or modp(n,100)=95,[$0..1520]); # Muniru A Asiru, Aug 29 2018
  • Mathematica
    Rest@ CoefficientList[Series[(5 x (x^3 + 4 x^2 + 12 x + 3))/((x^2 + x + 1) (x - 1)^2), {x, 0, 46}], x] (* Michael De Vlieger, Aug 05 2018 *)
    Table[100*n/3 - 80*Sin[2*n*Pi/3]/(3*Sqrt[3]) - 5,{n,1,46}] (* Stefano Spezia, Aug 29 2018 *)

Formula

a(n) = 10*A317633(n) + 5.
a(n) = a(n-3) + 100, a(1) = 15, a(2) = 75, a(3) = 95.
From Franck Maminirina Ramaharo, Aug 05 2018: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4), n>4.
a(n) = A290781(A047205(n)).
a(n) = 20*A008854(n+1) - 5.
a(n) = 100*n/3 - 80*sin(2*n*Pi/3)/(3*sqrt(3)) - 5.
G.f.: (5*x*(x^3 + 4*x^2 + 12*x + 3))/((x^2 + x + 1)*(x - 1)^2).
E.g.f.: 100*x*exp(x)/3 - 80*sin(sqrt(3)*x/2)/(exp(x/2)*(3*sqrt(3)))-5*exp(x).
(End)
Previous Showing 21-22 of 22 results.