A110147
10^((n^2-n)/2).
Original entry on oeis.org
1, 1, 10, 1000, 1000000, 10000000000, 1000000000000000, 1000000000000000000000, 10000000000000000000000000000, 1000000000000000000000000000000000000
Offset: 0
A294353
Product of first n terms of the binomial transform of n^n (A086331).
Original entry on oeis.org
1, 2, 14, 602, 236586, 1116922506, 78020387811618, 95634036502805444826, 2378081951650318040462277306, 1361239109900199746154166909875717978, 20062823024247092576000017563809908231829439138, 8420023655209092490508999978430595224656730339006712229850
Offset: 0
-
Table[Product[1 + Sum[Binomial[m, k]*k^k, {k, 1, m}], {m, 0, n}], {n, 0, 12}]
A110195
a(n) = 11^((n^2-n)/2).
Original entry on oeis.org
1, 1, 11, 1331, 1771561, 25937424601, 4177248169415651, 7400249944258160101211, 144209936106499234037676064081, 30912680532870672635673352936887453361, 72890483685103052142902866787761839379440139451, 1890591424712781041871514584574319778449301246603238034051
Offset: 0
Cf.
A001020,
A006125,
A047656,
A053763,
A053764,
A109345,
A109354,
A109493,
A109966,
A110147,
A161680.
-
Table[11^((n^2-n)/2),{n,0,20}] (* Harvey P. Dale, Feb 02 2012 *)
Join[{1,1},Table[Det[Table[Binomial[11i,j],{i,n},{j,n}]],{n,10}]] (* Harvey P. Dale, Apr 01 2019 *)
A129147
Expansion of c(x(1+2x)), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 1, 4, 13, 52, 214, 928, 4141, 18940, 88258, 417616, 2001058, 9690184, 47348812, 233158144, 1155900541, 5764510060, 28898899594, 145556001136, 736206912982, 3737768204344, 19042072755124, 97313398530496, 498737257238482, 2562773039735896, 13200732624526804, 68148459129343648
Offset: 0
- Barry, Paul; Hennessy, Aoife Four-term recurrences, orthogonal polynomials and Riordan arrays. J. Integer Seq. 15 (2012), no. 4, Article 12.4.2, 19 pp.
-
CoefficientList[Series[(1-Sqrt[1-4*x*(1+2*x)])/(2*x*(1+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
-
x='x+O('x^66);
C(x)=(1-sqrt(1-4*x))/(2*x);
Vec(C(x*(1+2*x))) \\ Joerg Arndt, May 15 2013
A341471
Number of antisymmetric, antitransitive relations on n labeled nodes.
Original entry on oeis.org
1, 1, 3, 21, 317, 9735, 583907, 66226033, 13837055261
Offset: 0
There are a(3) = 21 antisymmetric, antitransitive relations on n = 3 letters:
- the empty relation,
- all six relations containing only a single pair (x,y) (with x != y),
- all twelve relations {(x1,y1), (x2,y2)} containing exactly two ordered pairs, neither of which is (y1,x1) or (y2,x2), and
- two relations containing three ordered pairs: {(1,2), (2,3), (3,1)} and {(1,3), (3,2), (2,1)}.
A341473
The number of antitransitive relations on n labeled nodes.
Original entry on oeis.org
1, 1, 4, 39, 921, 47462, 5205915, 1161039833, 516101770210
Offset: 0
A350749
Triangle read by rows: T(n,k) is the number of oriented graphs on n labeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.
Original entry on oeis.org
1, 1, 1, 2, 1, 6, 12, 8, 1, 12, 60, 160, 240, 192, 64, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024, 1, 30, 420, 3640, 21840, 96096, 320320, 823680, 1647360, 2562560, 3075072, 2795520, 1863680, 860160, 245760, 32768
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 2;
[3] 1, 6, 12, 8;
[4] 1, 12, 60, 160, 240, 192, 64;
[5] 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024;
...
-
T(n,k) = 2^k * binomial(n*(n-1)/2, k)
-
row(n) = {Vecrev((1+2*y)^(n*(n-1)/2))}
{ for(n=0, 6, print(row(n))) }
A353041
G.f. A(x) satisfies: A(x) = 1 + x * A(3*x/(1 + 2*x)) / (1 - x).
Original entry on oeis.org
1, 1, 4, 34, 820, 62140, 14651728, 10547347384, 22950318347248, 150277943334242320, 2955664382713520203072, 174478760893191691170298912, 30905073486465684713191125079360, 16423574117627547687292156418920831936, 26184104208316120602662312616366633316565248
Offset: 0
-
nmax = 14; A[] = 0; Do[A[x] = 1 + x A[3 x/(1 + 2 x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n - 1, k - 1] 3^(k (k - 1)/2), {k, 0, n}], {n, 0, 14}]
A206601
3^(n(n+1)/2) - 1.
Original entry on oeis.org
0, 2, 26, 728, 59048, 14348906, 10460353202, 22876792454960, 150094635296999120, 2954312706550833698642, 174449211009120179071170506, 30903154382632612361920641803528, 16423203268260658146231467800709255288, 26183890704263137277674192438430182020124346
Offset: 0
In the case of 2 different types of communication lines and 4 cities, the number of different networks (connecting at least 2 cities) is 728.
A209916
Kolmogorov's button, 2-color generic convex polygon version.
Original entry on oeis.org
0, 0, 2, 26, 1457, 1889567, 470184984575, 359414999291950792703, 27008149481218253520093899825086463, 12768639440249474099578561928613102801011591209543532543
Offset: 0
For the classic 4-hole button (where n=4 and c=2) the number of distinct patterns is a(n) = A047656(4)*2^A000332(4) - 1 = 729*2 - 1 = 1457. The "-1" stands for the case where the threads are missing, i.e., where the button is unattached to the cloth.
- Masha Gessen, Perfect Rigor, A Genius and the Mathematical Breakthrough of the Century, Houghton Mifflin Harcourt, 2009, page 38.
-
[3^((n^2-n) div 2)*2^Binomial(n,4)-1: n in [0..10]]; // Vincenzo Librandi, Dec 29 2015
-
Table[-1+(3^Binomial[n,2])*(2^Binomial[n,4]),{n,0,9}] (* Ivan N. Ianakiev, Dec 29 2015 *)
Comments