cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A110147 10^((n^2-n)/2).

Original entry on oeis.org

1, 1, 10, 1000, 1000000, 10000000000, 1000000000000000, 1000000000000000000000, 10000000000000000000000000000, 1000000000000000000000000000000000000
Offset: 0

Views

Author

Philippe Deléham, Sep 04 2005

Keywords

Comments

Sequence given by the Hankel transform (see A001906 for definition) of A082148 = {1, 1, 11, 131, 1661, 22101, 305151, 4335711, ...}; example: det([1, 1, 11, 131; 1, 11, 131, 1661; 11, 131, 1661, 22101; 131, 1661, 22101, 305151]) = 10^6 = 1000000.
Also the Hankel transform of A379103. - Nathaniel Johnston, Dec 16 2024

Crossrefs

Programs

Formula

a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(10i, j).
a(n)=10a(n-1)^2/a(n-2), a(0)=a(1)=1. - Michael Somos, Sep 12 2005

A294353 Product of first n terms of the binomial transform of n^n (A086331).

Original entry on oeis.org

1, 2, 14, 602, 236586, 1116922506, 78020387811618, 95634036502805444826, 2378081951650318040462277306, 1361239109900199746154166909875717978, 20062823024247092576000017563809908231829439138, 8420023655209092490508999978430595224656730339006712229850
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[1 + Sum[Binomial[m, k]*k^k, {k, 1, m}], {m, 0, n}], {n, 0, 12}]

Formula

a(n) ~ c * n^(n*(n+1)/2 + 1/12 + exp(-1)/2) / exp(n^2/4 - n*exp(-1)), where c = 1.981849007720509372587479129359338230641860983165241915197508762536...

A110195 a(n) = 11^((n^2-n)/2).

Original entry on oeis.org

1, 1, 11, 1331, 1771561, 25937424601, 4177248169415651, 7400249944258160101211, 144209936106499234037676064081, 30912680532870672635673352936887453361, 72890483685103052142902866787761839379440139451, 1890591424712781041871514584574319778449301246603238034051
Offset: 0

Views

Author

Philippe Deléham, Sep 07 2005

Keywords

Comments

Sequence given by the Hankel transform (see A001906 for definition) of A082173 = {1, 1, 12, 155, 2124, 30482, 453432, 6936799, ...}; example : det([1, 1, 12, 155; 1, 12, 155, 2124; 12, 155, 2124, 30482; 155, 2124, 30482, 453432]) = 11^6 = 1771561.

Crossrefs

Programs

  • Mathematica
    Table[11^((n^2-n)/2),{n,0,20}] (* Harvey P. Dale, Feb 02 2012 *)
    Join[{1,1},Table[Det[Table[Binomial[11i,j],{i,n},{j,n}]],{n,10}]] (* Harvey P. Dale, Apr 01 2019 *)

Formula

a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(11i, j).
a(n) = A001020(A161680(n)).

Extensions

a(11) from Harvey P. Dale, Feb 02 2012
a(12) from Jason Yuen, Aug 29 2025

A129147 Expansion of c(x(1+2x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 13, 52, 214, 928, 4141, 18940, 88258, 417616, 2001058, 9690184, 47348812, 233158144, 1155900541, 5764510060, 28898899594, 145556001136, 736206912982, 3737768204344, 19042072755124, 97313398530496, 498737257238482, 2562773039735896, 13200732624526804, 68148459129343648
Offset: 0

Views

Author

Paul Barry, Apr 01 2007

Keywords

Comments

Hankel transform of a(n) is A047656(n+1)=3^C(n+1,2). In general, the Hankel transform of the expansion of c(x(1+r*x)) is (r+1)^C(n+1,2).
Number of paths weakly above X-axis from (0,0) to (0,2n) using steps (1,1), (1,-1) and two colors of (3,1). - David Scambler, Jun 21 2013

References

  • Barry, Paul; Hennessy, Aoife Four-term recurrences, orthogonal polynomials and Riordan arrays. J. Integer Seq. 15 (2012), no. 4, Article 12.4.2, 19 pp.

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x*(1+2*x)])/(2*x*(1+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
  • PARI
    x='x+O('x^66);
    C(x)=(1-sqrt(1-4*x))/(2*x);
    Vec(C(x*(1+2*x))) \\ Joerg Arndt, May 15 2013

Formula

a(n)=sum{k=0..n, C(k,n-k)*2^(n-k)*C(k)};
a(n)=(1/(2*pi))*int(x^n*sqrt(8+4x-x^2)/(x+2),x,2-2*sqrt(3),2+2*sqrt(3));
Conjecture: (n+1)*a(n) +2*(2-n)*a(n-1) +4*(5-4n)*a(n-2) +16*(2-n)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
G.f.: Q(0), where Q(k)= 1 + (4*k+1)*x*(1+2*x)/(k + 1 - x*(1+2*x)*(2*k+2)*(4*k+3)/(2*x*(1+2*x)*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
a(n) ~ sqrt(3-sqrt(3)) * (2*(1+sqrt(3)))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014

A341471 Number of antisymmetric, antitransitive relations on n labeled nodes.

Original entry on oeis.org

1, 1, 3, 21, 317, 9735, 583907, 66226033, 13837055261
Offset: 0

Views

Author

Peter Kagey, Feb 13 2021

Keywords

Comments

An antisymmetric, antitransitive relation is one where xRy implies "not yRx" and xRy and yRz implies "not xRz". All antitransitive relations are irreflexive, so this sequence is counting "anti-equivalence relations".
a(n) < A047656(n).
Idea thanks to Richard Arratia, who saw, verbatim in an editorial, "False equivalences? There were almost too many to count."

Examples

			There are a(3) = 21 antisymmetric, antitransitive relations on n = 3 letters:
  - the empty relation,
  - all six relations containing only a single pair (x,y) (with x != y),
  - all twelve relations {(x1,y1), (x2,y2)} containing exactly two ordered pairs, neither of which is (y1,x1) or (y2,x2), and
  - two relations containing three ordered pairs: {(1,2), (2,3), (3,1)} and {(1,3), (3,2), (2,1)}.
		

Crossrefs

Number of relations on labeled nodes: A000110 (equivalence), A001831 (transitive and antitransitive), A002416 (unrestricted), A006125 (symmetric), A006905 (transitive), A047656 (reflexive and antisymmetric), A083667 (antisymmetric), A341473 (antitransitive).

Extensions

a(6)-a(8) from Bert Dobbelaere, Feb 27 2021

A341473 The number of antitransitive relations on n labeled nodes.

Original entry on oeis.org

1, 1, 4, 39, 921, 47462, 5205915, 1161039833, 516101770210
Offset: 0

Views

Author

Peter Kagey, Feb 13 2021

Keywords

Comments

A relation is antitransitive if xRy and yRz implies "not xRz". As such, antitransitive relations are always irreflexive.

Crossrefs

Number of relations on labeled nodes: A000110 (equivalence), A002416 (unrestricted), A006125 (symmetric), A006905 (transitive), A047656 (reflexive and antisymmetric), A083667 (antisymmetric), A341471 (antisymmetric and antitransitive).

Extensions

a(6)-a(8) from Bert Dobbelaere, Feb 27 2021

A350749 Triangle read by rows: T(n,k) is the number of oriented graphs on n labeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 12, 8, 1, 12, 60, 160, 240, 192, 64, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024, 1, 30, 420, 3640, 21840, 96096, 320320, 823680, 1647360, 2562560, 3075072, 2795520, 1863680, 860160, 245760, 32768
Offset: 0

Views

Author

Andrew Howroyd, Feb 15 2022

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1;
  [2] 1,  2;
  [3] 1,  6,  12,   8;
  [4] 1, 12,  60, 160,  240,  192,    64;
  [5] 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024;
  ...
		

Crossrefs

Row sums are A047656.
The unlabeled version is A350733.
Cf. A013609, A350732 (weakly connected), A350731 (strongly connected).

Programs

  • PARI
    T(n,k) = 2^k * binomial(n*(n-1)/2, k)
    
  • PARI
    row(n) = {Vecrev((1+2*y)^(n*(n-1)/2))}
    { for(n=0, 6, print(row(n))) }

Formula

T(n,k) = 2^k * binomial(n*(n-1)/2, k) = A013609(n*(n-1)/2, k).
T(n,k) = [y^k] (1+2*y)^(n*(n-1)/2).

A353041 G.f. A(x) satisfies: A(x) = 1 + x * A(3*x/(1 + 2*x)) / (1 - x).

Original entry on oeis.org

1, 1, 4, 34, 820, 62140, 14651728, 10547347384, 22950318347248, 150277943334242320, 2955664382713520203072, 174478760893191691170298912, 30905073486465684713191125079360, 16423574117627547687292156418920831936, 26184104208316120602662312616366633316565248
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2022

Keywords

Crossrefs

Cf. A006898, A047656, A135755 (partial sums), A353042.

Programs

  • Mathematica
    nmax = 14; A[] = 0; Do[A[x] = 1 + x A[3 x/(1 + 2 x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n - 1, k - 1] 3^(k (k - 1)/2), {k, 0, n}], {n, 0, 14}]

Formula

G.f.: Sum_{k>=0} 3^(k*(k-1)/2) * (x/(1 - x))^k.
a(n) = Sum_{k=0..n} binomial(n-1,k-1) * 3^(k*(k-1)/2).

A206601 3^(n(n+1)/2) - 1.

Original entry on oeis.org

0, 2, 26, 728, 59048, 14348906, 10460353202, 22876792454960, 150094635296999120, 2954312706550833698642, 174449211009120179071170506, 30903154382632612361920641803528, 16423203268260658146231467800709255288, 26183890704263137277674192438430182020124346
Offset: 0

Views

Author

Ivan N. Ianakiev, Feb 10 2012

Keywords

Comments

There are n cities located on the vertices of a convex n-gon and 2 types of communication lines available. Any city can be connected to any other by only one communication line (that can be of any type). A network exists if at least 2 cities are connected by a communication line. The sequence shows how many different networks a(n) can be built. In general, if the number of communication-line types is c, then a(n) = (c+1)^(n(n+1)/2)-1. Thus other sequences of this type can be generated.

Examples

			In the case of 2 different types of communication lines and 4 cities, the number of different networks (connecting at least 2 cities) is 728.
		

Crossrefs

Formula

a(n) = (3^A000217) - 1.
a(n) = A047656(n+1) - 1. - Omar E. Pol, Feb 18 2012

A209916 Kolmogorov's button, 2-color generic convex polygon version.

Original entry on oeis.org

0, 0, 2, 26, 1457, 1889567, 470184984575, 359414999291950792703, 27008149481218253520093899825086463, 12768639440249474099578561928613102801011591209543532543
Offset: 0

Views

Author

Ivan N. Ianakiev, Mar 15 2012

Keywords

Comments

This sequence shows the number of distinct patterns that can be created with threads of 2 colors while sewing on a button with n buttonholes located on the vertices of a generic convex n-gon, i.e., a convex n-gon with no more than two diagonals intersecting at any point in its interior. The number of all distinct patterns due to intersections made by differently colored diagonals of the n-gon, equaling 2^A000332(n), is taken into account (as red-diagonal-over-green-diagonal, for instance, is a different pattern from green-diagonal-over-red-diagonal). In general, if the number of colors is c, then a(n) = ((c+1)^(n-1)*n/2)*((c-1)*c)^A000332(n)-1.
Kolmogorov's button problem is briefly mentioned in the book by Gessen.

Examples

			For the classic 4-hole button (where n=4 and c=2) the number of distinct patterns is a(n) = A047656(4)*2^A000332(4) - 1 = 729*2 - 1 = 1457. The "-1" stands for the case where the threads are missing, i.e., where the button is unattached to the cloth.
		

References

  • Masha Gessen, Perfect Rigor, A Genius and the Mathematical Breakthrough of the Century, Houghton Mifflin Harcourt, 2009, page 38.

Crossrefs

Programs

  • Magma
    [3^((n^2-n) div 2)*2^Binomial(n,4)-1: n in [0..10]]; // Vincenzo Librandi, Dec 29 2015
  • Mathematica
    Table[-1+(3^Binomial[n,2])*(2^Binomial[n,4]),{n,0,9}] (* Ivan N. Ianakiev, Dec 29 2015 *)

Formula

a(n) = A047656(n)*2^A000332(n) - 1.
Previous Showing 21-30 of 31 results. Next