A381438
Triangle read by rows where T(n>0,k>0) is the number of integer partitions of n whose section-sum partition ends with k.
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 2, 1, 0, 2, 3, 1, 0, 0, 3, 4, 1, 2, 0, 0, 4, 7, 2, 1, 0, 0, 0, 5, 9, 4, 1, 2, 0, 0, 0, 6, 13, 4, 4, 1, 0, 0, 0, 0, 8, 18, 6, 3, 2, 3, 0, 0, 0, 0, 10, 26, 9, 5, 2, 2, 0, 0, 0, 0, 0, 12, 32, 12, 8, 4, 2, 4, 0, 0, 0, 0, 0, 15
Offset: 1
Triangle begins:
1
1 1
1 0 2
2 1 0 2
3 1 0 0 3
4 1 2 0 0 4
7 2 1 0 0 0 5
9 4 1 2 0 0 0 6
13 4 4 1 0 0 0 0 8
18 6 3 2 3 0 0 0 0 10
26 9 5 2 2 0 0 0 0 0 12
32 12 8 4 2 4 0 0 0 0 0 15
47 16 11 4 3 2 0 0 0 0 0 0 18
60 23 12 8 3 2 5 0 0 0 0 0 0 22
79 27 20 7 9 4 3 0 0 0 0 0 0 0 27
Row n = 9 counts the following partitions:
(711) (522) (333) (441) . . . . (9)
(6111) (4221) (3321) (81)
(5211) (3222) (32211) (72)
(51111) (22221) (222111) (63)
(4311) (621)
(42111) (54)
(411111) (531)
(33111) (432)
(321111)
(3111111)
(2211111)
(21111111)
(111111111)
Row sums without the last column (k=n) are
A047967.
First column (k=1) is
A241131 shifted right and starting with 1 instead of 0.
Using Heinz numbers, this statistic is given by
A381437.
A122111 represents conjugation in terms of Heinz numbers.
-
egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
Table[Length[Select[IntegerPartitions[n],k==Last[egs[#]]&]],{n,15},{k,n}]
A006477
Number of partitions of n with at least 1 odd and 1 even part.
Original entry on oeis.org
0, 0, 0, 1, 1, 4, 4, 10, 11, 22, 25, 44, 51, 83, 98, 149, 177, 259, 309, 436, 521, 716, 857, 1151, 1376, 1816, 2170, 2818, 3361, 4309, 5132, 6502, 7728, 9695, 11501, 14298, 16924, 20877, 24661, 30203, 35598, 43323, 50956, 61651, 72357, 87086, 101999
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a[n_?OddQ] := PartitionsP[n] - PartitionsQ[n]; a[n_?EvenQ] := PartitionsP[n] - PartitionsQ[n] - PartitionsP[n/2]; a[0] = 0; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 17 2014, after Vladeta Jovovic *)
A238354
Triangle T(n,k) read by rows: T(n,k) is the number of partitions of n (as weakly ascending list of parts) with minimal ascent k, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 4, 0, 1, 0, 0, 5, 1, 0, 1, 0, 0, 8, 1, 1, 0, 1, 0, 0, 11, 2, 0, 1, 0, 1, 0, 0, 17, 2, 1, 0, 1, 0, 1, 0, 0, 23, 3, 1, 1, 0, 1, 0, 1, 0, 0, 33, 4, 2, 0, 1, 0, 1, 0, 1, 0, 0, 45, 5, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 63, 6, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 84, 8, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 114, 10, 4, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0
Offset: 0
Triangle starts:
00: 1;
01: 1, 0;
02: 2, 0, 0;
03: 2, 1, 0, 0;
04: 4, 0, 1, 0, 0;
05: 5, 1, 0, 1, 0, 0;
06: 8, 1, 1, 0, 1, 0, 0;
07: 11, 2, 0, 1, 0, 1, 0, 0;
08: 17, 2, 1, 0, 1, 0, 1, 0, 0;
09: 23, 3, 1, 1, 0, 1, 0, 1, 0, 0;
10: 33, 4, 2, 0, 1, 0, 1, 0, 1, 0, 0;
11: 45, 5, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0;
12: 63, 6, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0;
13: 84, 8, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0;
14: 114, 10, 4, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0;
15: 150, 13, 4, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0;
...
The 11 partitions of 6 together with their minimal ascents are:
01: [ 1 1 1 1 1 1 ] 0
02: [ 1 1 1 1 2 ] 0
03: [ 1 1 1 3 ] 0
04: [ 1 1 2 2 ] 0
05: [ 1 1 4 ] 0
06: [ 1 2 3 ] 1
07: [ 1 5 ] 4
08: [ 2 2 2 ] 0
09: [ 2 4 ] 2
10: [ 3 3 ] 0
11: [ 6 ] 0
There are 8 partitions of 6 with min ascent 0, 1 with min ascents 1, 2, and 4, giving row 6 of the triangle: 8, 1, 1, 0, 1, 0, 0.
Cf.
A238353 (partitions by maximal ascent).
-
b:= proc(n, i, t) option remember; `if`(n=0, 1/x, `if`(i<1, 0,
b(n, i-1, t)+`if`(i>n, 0, (p->`if`(t=0, p, add(coeff(
p, x, j)*x^`if`(j<0, t-i, min(j, t-i)),
j=-1..degree(p))))(b(n-i, i, i)))))
end:
T:= n->(p->seq(coeff(p, x, k)+`if`(k=0, 1, 0), k=0..n))(b(n$2, 0)):
seq(T(n), n=0..15);
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1/x, If[i<1, 0, b[n, i-1, t]+If[i>n, 0, Function[{p}, If[t == 0, p, Sum[Coefficient[p, x, j]*x^If[j<0, t-i, Min[j, t-i]], {j, -1, Exponent[p, x]}]]][b[n-i, i, i]]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, k]+If[k == 0, 1, 0], {k, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 12 2015, translated from Maple *)
A366845
Number of integer partitions of n that contain at least one even part and whose halved even parts are relatively prime.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 23, 31, 43, 58, 82, 107, 144, 189, 250, 323, 420, 537, 695, 880, 1114, 1404, 1774, 2210, 2759, 3423, 4239, 5223, 6430, 7869, 9640, 11738, 14266, 17297, 20950, 25256, 30423, 36545, 43824, 52421, 62620, 74599, 88802, 105431
Offset: 0
The partition y = (6,4) has halved even parts (3,2) which are relatively prime, so y is counted under a(10).
The a(2) = 1 through a(9) = 15 partitions:
(2) (21) (22) (32) (42) (52) (62) (72)
(211) (221) (222) (322) (332) (432)
(2111) (321) (421) (422) (522)
(2211) (2221) (521) (621)
(21111) (3211) (2222) (3222)
(22111) (3221) (3321)
(211111) (4211) (4221)
(22211) (5211)
(32111) (22221)
(221111) (32211)
(2111111) (42111)
(222111)
(321111)
(2211111)
(21111111)
These partitions have ranks
A366847.
A078374 counts relatively prime strict partitions.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
-
Table[Length[Select[IntegerPartitions[n], GCD@@Select[#,EvenQ]/2==1&]],{n,0,30}]
A194543
Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n into parts p_i such that |p_i - p_j| >= k for i != j.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 2, 2, 1, 1, 7, 3, 2, 2, 1, 1, 11, 4, 3, 2, 2, 1, 1, 15, 5, 3, 3, 2, 2, 1, 1, 22, 6, 4, 3, 3, 2, 2, 1, 1, 30, 8, 5, 4, 3, 3, 2, 2, 1, 1, 42, 10, 6, 4, 4, 3, 3, 2, 2, 1, 1, 56, 12, 7, 5, 4, 4, 3, 3, 2, 2, 1, 1, 77, 15, 9, 6, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 0
T(7,3) = 3: [7], [6,1], [5,2].
T(23,6) = 11: [23], [22,1], [21,2], [20,3], [19,4], [18,5], [17,6], [16,7], [15,8], [15,7,1], [14,8,1].
Triangle begins:
1;
1, 1;
2, 1, 1;
3, 2, 1, 1;
5, 2, 2, 1, 1;
7, 3, 2, 2, 1, 1;
11, 4, 3, 2, 2, 1, 1;
15, 5, 3, 3, 2, 2, 1, 1;
Columns 0-8 give:
A000041,
A000009,
A003114,
A025157,
A025158,
A025159,
A025160,
A025161,
A025162. T(n,0)-T(n,1) =
A047967(n).
-
b:= proc(n, i, k) option remember;
if n<0 then 0
elif n=0 then 1
else add(b(n-i-j, i+j, k), j=k..n-i)
fi
end:
T:= (n, k)-> `if`(n=0, 1, 0) +add(b(n-i, i, k), i=1..n):
seq(seq(T(n, k), k=0..n), n=0..20);
-
b[n_, i_, k_] := b[n, i, k] = If[n<0, 0, If[n == 0, 1, Sum[b[n-i-j, i+j, k], {j, k, n-i}]]]; T[n_, k_] := If[n == 0, 1, 0] + Sum[b[n-i, i, k], {i, 1, n}]; Table[ Table[T[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
A366850
Number of integer partitions of n whose odd parts are relatively prime.
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 7, 11, 16, 22, 32, 43, 60, 80, 110, 140, 194, 244, 327, 410, 544, 670, 883, 1081, 1401, 1708, 2195, 2651, 3382, 4069, 5129, 6157, 7708, 9194, 11438, 13599, 16788, 19911, 24432, 28858, 35229, 41507, 50359, 59201, 71489, 83776, 100731, 117784
Offset: 0
The a(1) = 1 through a(8) = 16 partitions:
(1) (11) (21) (31) (41) (51) (61) (53)
(111) (211) (221) (321) (331) (71)
(1111) (311) (411) (421) (431)
(2111) (2211) (511) (521)
(11111) (3111) (2221) (611)
(21111) (3211) (3221)
(111111) (4111) (3311)
(22111) (4211)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
The complement is counted by
A366842.
These partitions have ranks
A366846.
A000740 counts relatively prime compositions.
A078374 counts relatively prime strict partitions.
A113685 counts partitions by sum of odd parts, rank statistic
A366528.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
-
Table[Length[Select[IntegerPartitions[n],GCD@@Select[#,OddQ]==1&]],{n,0,30}]
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 8, 14, 19, 28, 39, 55, 72, 100, 132, 173, 227, 296, 380, 489, 622, 789, 999, 1254, 1568, 1956, 2433, 3007, 3713, 4564, 5597, 6841, 8344, 10140, 12307, 14880, 17969, 21636, 26012, 31182, 37331, 44582, 53167, 63260, 75170
Offset: 0
The partitions of n = 6 are:
6 ....................... All parts are equal, but included .. (1).
5 + 1 ................... All parts are not equal ............ (2).
4 + 2 ................... All parts are not equal ............ (3).
4 + 1 + 1 ............... All parts are not equal ............ (4).
3 + 3 ................... All parts are equal, not included.
3 + 2 + 1 ............... All parts are not equal ............ (5).
3 + 1 + 1 + 1 ........... All parts are not equal ............ (6).
2 + 2 + 2 ............... All parts are equal, not included.
2 + 2 + 1 + 1 ........... All parts are not equal ............ (7).
2 + 1 + 1 + 1 + 1 ....... All parts are not equal ............ (8).
1 + 1 + 1 + 1 + 1 + 1 ... All parts are equal, not included.
Then a(6) = 8.
Cf.
A000005,
A000009,
A000041,
A000065,
A032741,
A047967,
A111133,
A144300,
A135010,
A138121,
A167930,
A167932,
A167935.
-
b:= proc(n, i, k) option remember;
if n<0 then 0
elif n=0 then `if`(k=0, 1, 0)
elif i=0 then 0
else b(n, i-1, k)+
b(n-i, i, `if`(k<0, i, `if`(k<>i, 0, k)))
fi
end:
a:= n-> 1 +b(n, n-1, -1):
seq(a(n), n=0..50); # Alois P. Heinz, Dec 01 2010
-
a[0] = 1; a[n_] := PartitionsP[n] - DivisorSigma[0, n] + 1; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 08 2016 *)
A194452
Total number of repeated parts in all partitions of n.
Original entry on oeis.org
0, 0, 2, 3, 8, 12, 24, 35, 60, 87, 136, 192, 287, 396, 567, 773, 1074, 1439, 1958, 2587, 3454, 4514, 5931, 7666, 9951, 12736, 16341, 20743, 26354, 33184, 41807, 52262, 65329, 81144, 100721, 124344, 153390, 188303, 230940, 282063, 344100, 418242, 507762
Offset: 0
For n = 6 we have:
--------------------------------------
. Number of
Partitions repeated parts
--------------------------------------
6 .......................... 0
3 + 3 ...................... 2
4 + 2 ...................... 0
2 + 2 + 2 .................. 3
5 + 1 ...................... 0
3 + 2 + 1 .................. 0
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 4
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
Total ..................... 24
So a(6) = 24.
-
b:= proc(n, i) option remember; local h, j, t;
if n<0 then [0, 0]
elif n=0 then [1, 0]
elif i<1 then [0, 0]
else h:= [0, 0];
for j from 0 to iquo(n, i) do
t:= b(n-i*j, i-1);
h:= [h[1]+t[1], h[2]+t[2]+`if`(j<2, 0, t[1]*j)]
od; h
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Nov 20 2011
g := add(x^(2*j)*(2-x^j)/(1-x^j), j = 1 .. 80)/mul(1-x^j, j = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Feb 02 2016
-
myCount[p_List] := Module[{t}, If[p == {}, 0, t = Transpose[Tally[p]][[2]]; Sum[If[t[[i]] == 1, 0, t[[i]]], {i, Length[t]}]]]; Table[Total[Table[myCount[p], {p, IntegerPartitions[i]}]], {i, 0, 20}] (* T. D. Noe, Nov 19 2011 *)
b[n_, i_] := b[n, i] = Module[{h, j, t}, Which[n<0, {0, 0}, n==0, {1, 0}, i < 1, {0, 0}, True, h={0, 0}; For[j=0, j <= Quotient[n, i], j++, t = b[n - i*j, i-1]; h = {h[[1]]+t[[1]], h[[2]]+t[[2]] + If[j<2, 0, t[[1]]*j]}]; h] ]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 25 2015, after Alois P. Heinz *)
Table[Length[Flatten[Select[Flatten[Split[#]&/@IntegerPartitions[n],1],Length[#]>1&]]],{n,0,60}] (* Harvey P. Dale, Jun 12 2024 *)
A321773
Number of compositions of n into parts with distinct multiplicities and with exactly three parts.
Original entry on oeis.org
1, 3, 6, 4, 9, 9, 10, 12, 15, 13, 18, 18, 19, 21, 24, 22, 27, 27, 28, 30, 33, 31, 36, 36, 37, 39, 42, 40, 45, 45, 46, 48, 51, 49, 54, 54, 55, 57, 60, 58, 63, 63, 64, 66, 69, 67, 72, 72, 73, 75, 78, 76, 81, 81, 82, 84, 87, 85, 90, 90, 91, 93, 96, 94, 99, 99
Offset: 3
From _Gus Wiseman_, Nov 11 2020: (Start)
Also the number of 3-part non-strict compositions of n. For example, the a(3) = 1 through a(11) = 15 triples are:
111 112 113 114 115 116 117 118 119
121 122 141 133 161 144 181 155
211 131 222 151 224 171 226 191
212 411 223 233 225 244 227
221 232 242 252 262 272
311 313 323 333 334 335
322 332 414 343 344
331 422 441 424 353
511 611 522 433 434
711 442 443
622 515
811 533
551
722
911
(End)
A235451 counts 3-part compositions with distinct run-lengths
A001399(n-6) counts 3-part compositions in the complement.
A261982 counts non-strict compositions of any length.
A032020 counts strict compositions.
A242771 counts triples that are not strictly increasing.
-
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n,{3}],!UnsameQ@@#&]],{n,0,100}] (* Gus Wiseman, Nov 11 2020 *)
A350140
Nonsquarefree numbers whose prime signature has at least one odd part other the first or last.
Original entry on oeis.org
60, 84, 120, 132, 140, 150, 156, 168, 204, 220, 228, 240, 260, 264, 270, 276, 280, 294, 300, 308, 312, 315, 336, 340, 348, 364, 372, 378, 380, 408, 420, 440, 444, 456, 460, 476, 480, 490, 492, 495, 516, 520, 528, 532, 540, 552, 560, 564, 572, 580, 585, 588
Offset: 1
The terms together with their Heinz partitions begin (A-E = 10-14):
60: (3211) 276: (9211) 420: (43211)
84: (4211) 280: (43111) 440: (53111)
120: (32111) 294: (4421) 444: (C211)
132: (5211) 300: (33211) 456: (82111)
140: (4311) 308: (5411) 460: (9311)
150: (3321) 312: (62111) 476: (7411)
156: (6211) 315: (4322) 480: (3211111)
168: (42111) 336: (421111) 490: (4431)
204: (7211) 340: (7311) 492: (D211)
220: (5311) 348: (A211) 495: (5322)
228: (8211) 364: (6411) 516: (E211)
240: (321111) 372: (B211) 520: (63111)
260: (6311) 378: (42221) 528: (521111)
264: (52111) 380: (8311) 532: (8411)
270: (32221) 408: (72111) 540: (322211)
Including all nonsquarefree numbers gives
A013929, complement
A005117.
The strict instead of non-strict version is
A336568, counted by
A347548.
A version for compositions allowing strict is
A349057, counted by
A349053.
These partitions are counted by
A349796.
The complement in nonsquarefree partitions is
A350137, counted by
A349795.
A003242 = Carlitz (anti-run) compositions.
A096441 = weakly alternating 0-appended partitions.
A345164 = alternating permutations of prime indices, complement
A350251.
A345170 = partitions w/ an alternating permutation, ranked by
A345172.
A349056 = weakly alternating permutations of prime indices.
A349798 = weakly but not strongly alternating perms of prime indices.
Cf.
A000111,
A047967,
A333213,
A335448,
A344615,
A344653,
A345173,
A349054,
A349059,
A349797,
A349799.
-
Select[Range[300],!SquareFreeQ[#]&&PrimeNu[#]>1&& !And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]
Comments