cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-95 of 95 results.

A064439 Numbers n such that sigma(n) - n - 1 = pi(n).

Original entry on oeis.org

4, 55, 65, 95, 125, 145, 155, 185, 205, 2779, 2863, 55297, 174691, 174779, 487903, 1301989, 1302457, 5254751, 6383483, 23140961, 48267437, 59651051, 70111213, 70111247, 92514491, 199445641, 212210443, 514269523, 514269599, 21881358361, 1602278990111
Offset: 1

Views

Author

Jason Earls, Oct 01 2001

Keywords

Comments

a(32) > 3*10^12. - Giovanni Resta, Mar 31 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], DivisorSigma[1, #] - # - 1 == PrimePi[#] &] (* Giovanni Resta, Mar 31 2017 *)
  • PARI
    sig(n) = sigma(n)-n-1; pi(x, c=0) = forprime(p=2,x,c++); c for(n=1,10^8, if(sig(n)==pi(n),print(n)))
    
  • PARI
    { n=0; for (m=1, 10^9, if ((sigma(m) - m - 1)==primepi(m), write("b064439.txt", n++, " ", m); if (n==100, break)) ) } \\ Harry J. Smith, Sep 14 2009

Extensions

More terms from Klaus Brockhaus, Oct 05 2001. No further term < 800000.
a(16)-a(17) from Harry J. Smith, Sep 14 2009
a(18)-a(29) from Donovan Johnson, Feb 09 2013
a(30)-a(31) from Giovanni Resta, Mar 31 2017

A202239 n such that the sum of the factorials of the digits of n equals the sum of d|n, 1

Original entry on oeis.org

620, 13407, 66061, 266533, 282401, 416641, 3507607, 7036153, 7622243, 10327663, 17735167, 34802143, 57653483, 86357113, 86546363, 91203611, 112777747, 121825337, 124283381, 127316869, 176080309, 216687451, 218172511, 231811037, 243238447, 263364883, 272368301
Offset: 1

Views

Author

Michel Lagneau, Dec 16 2011

Keywords

Examples

			620 is in the sequence because 6! + 2! + 0!  = 720 + 2 + 1 = 723, and sum of the divisors 1< d< n = sigma(620) - n - 1 = 1344 - 620 - 1 = 723.
		

Crossrefs

Programs

  • Maple
    isA202239 := proc(n)
            A061602(n) = A048050(n) ;
    end proc:
    for n from 1 do
            if isA202239(n) then
            print(n) ;
            end if;
    end do; # R. J. Mathar, Dec 18 2011
  • Mathematica
    Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]!]]; Select[Range[2, 10^8], Q]

Formula

{n: A061602(n)= A048050(n)}. - R. J. Mathar, Dec 18 2011

Extensions

a(17)-a(27) from Donovan Johnson, Jan 14 2012

A202242 n such that the sum of digit !! of n equals the sum of d|n, 1

Original entry on oeis.org

14, 56, 28361, 119507, 191557, 287039, 691259, 750889
Offset: 1

Views

Author

Michel Lagneau, Dec 16 2011

Keywords

Comments

No further terms less than 10^8.
The double factorial n!! (A006882) of a positive integer n is the product of the positive integers <= n that have the same parity as n.

Examples

			56 is in the sequence because 5!! + 6!!  = 15 + 48 = 63, and sum of the divisors 1< d< 56 =  sigma(56) - 56 - 1 = 120 - 56 - 1 = 63.
		

Crossrefs

Programs

  • Mathematica
    Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]!!]]; Select[Range[2, 10^5], Q]

A293992 Numbers k such that sigma(k) - k - 1 is a perfect number.

Original entry on oeis.org

8, 115, 187, 1375, 2455, 8143, 13543, 18261, 21103, 23479, 40615, 41623, 43279, 49183, 49441, 51703, 56743, 61063, 61279, 61423, 89287, 95551, 137887, 214303, 331567, 379807, 476071, 715471, 1422871, 1515967, 1793527, 1977127, 2431087, 3098527, 3663871
Offset: 1

Views

Author

Zdenek Cervenka, Oct 21 2017

Keywords

Examples

			sigma(8) - 8 - 1 = 6, a perfect number, so 8 is a term;
sigma(115) - 115 - 1 = 28, a perfect number, so 115 is a term.
		

Crossrefs

Programs

  • Mathematica
    With[{pn=PerfectNumber[Range[10]]},Select[Range[37*10^5],MemberQ[pn, DivisorSigma[ 1,#]-#-1]&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 04 2019 *)

A380231 Alternating row sums of triangle A237591.

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 3, 4, 5, 4, 3, 6, 5, 4, 7, 8, 7, 8, 7, 10, 9, 8, 7, 10, 11, 10, 9, 12, 11, 14, 13, 14, 13, 12, 15, 16, 15, 14, 13, 16, 15, 18, 17, 16, 19, 18, 17, 20, 21, 22, 21, 20, 19, 22, 21, 24, 23, 22, 21, 24, 23, 22, 25, 26, 25, 28, 27, 26, 25, 28, 27, 32, 31, 30, 29, 28, 31, 30, 29
Offset: 1

Views

Author

Omar E. Pol, Jan 17 2025

Keywords

Comments

Consider the symmetric Dyck path in the first quadrant of the square grid described in the n-th row of A237593. Let C = (A240542(n), A240542(n)) be the middle point of the Dyck path.
a(n) is also the coordinate on the x axis of the point (a(n),n) and also the coordinate on the y axis of the point (n,a(n)) such that the middle point of the line segment [(a(n),n),(n,a(n))] coincides with the middle point C of the symmetric Dyck path.
The three line segments [(a(n),n),C], [(n,a(n)),C] and [(n,n),C] have the same length.
For n > 2 the points (n,n), C and (a(n),n) are the vertices of a virtual isosceles right triangle.
For n > 2 the points (n,n), C and (n,a(n)) are the vertices of a virtual isosceles right triangle.
For n > 2 the points (a(n),n), (n,n) and (n,a(n)) are the vertices of a virtual isosceles right triangle.

Examples

			For n = 14 the 14th row of A237591 is [8, 3, 1, 2] hence the alternating row sum is 8 - 3 + 1 - 2 = 4, so a(14) = 4.
On the other hand the 14th row of A237593 is the 14th row of A237591 together with the 14 th row of A237591 in reverse order as follows: [8, 3, 1, 2, 2, 1, 3, 8].
Then with the terms of the 14th row of A237593 we can draw a Dyck path in the first quadrant of the square grid as shown below:
.
         (y axis)
          .
          .
          .    (4,14)              (14,14)
          ._ _ _ . _ _ _ _            .
          .               |
          .               |
          .               |_
          .                 |
          .                 |_ _
          .                C    |_ _ _
          .                           |
          .                           |
          .                           |
          .                           |
          .                           . (14,4)
          .                           |
          .                           |
          . . . . . . . . . . . . . . | . . . (x axis)
        (0,0)
.
In the example the point C is the point (9,9).
The three line segments [(4,14),(9,9)], [(14,4),(9,9)] and [(14,14),(9,9)] have the same length.
The points (14,14), (9,9) and (4,14) are the vertices of a virtual isosceles right triangle.
The points (14,14), (9,9) and (14,4) are the vertices of a virtual isosceles right triangle.
The points (4,14), (14,14) and (14,4) are the vertices of a virtual isosceles right triangle.
		

Crossrefs

Other alternating row sums (ARS) related to the Dyck paths of A237593 and the stepped pyramid described in A245092 are as follows:
ARS of A237593 give A000004.
ARS of A196020 give A000203.
ARS of A252117 give A000203.
ARS of A271343 give A000593.
ARS of A231347 give A001065.
ARS of A236112 give A004125.
ARS of A236104 give A024916.
ARS of A249120 give A024916.
ARS of A271344 give A033879.
ARS of A231345 give A033880.
ARS of A239313 give A048050.
ARS of A237048 give A067742.
ARS of A236106 give A074400.
ARS of A235794 give A120444.
ARS of A266537 give A146076.
ARS of A236540 give A153485.
ARS of A262612 give A175254.
ARS of A353690 give A175254.
ARS of A239446 give A235796.
ARS of A239662 give A239050.
ARS of A235791 give A240542.
ARS of A272026 give A272027.
ARS of A211343 give A336305.

Programs

  • Mathematica
    A380231[n_] := 2*Sum[(-1)^(k + 1)*Ceiling[(n + 1)/k - (k + 1)/2], {k,  Quotient[Sqrt[8*n + 1] - 1, 2]}] - n;
    Array[A380231 , 100] (* Paolo Xausa, Sep 06 2025 *)
  • PARI
    row235791(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i);
    a(n) = my(orow = concat(row235791(n), 0)); vecsum(vector(#orow-1, i, (-1)^(i+1)*(orow[i] - orow[i+1]))); \\ Michel Marcus, Apr 13 2025

Formula

a(n) = 2*A240542(n) - n.
a(n) = n - 2*A322141(n).
a(n) = A240542(n) - A322141(n).
Previous Showing 91-95 of 95 results.