cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 99 results. Next

A364205 Expansion of Sum_{k>=0} x^(3*k+2) / (1 + x^(3*k+2)).

Original entry on oeis.org

0, 1, 0, -1, 1, 1, 0, 0, 0, 0, 1, -1, 0, 2, 1, -2, 1, 1, 0, -1, 0, 0, 1, 0, 1, 2, 0, -2, 1, 0, 0, -1, 1, 0, 2, -1, 0, 2, 0, -2, 1, 2, 0, -1, 1, 0, 1, -2, 0, 1, 1, -2, 1, 1, 2, 0, 0, 0, 1, -1, 0, 2, 0, -3, 2, 0, 0, -1, 1, 0, 1, 0, 0, 2, 1, -2, 2, 2, 0, -3, 0, 0, 1, -2, 2, 2, 1, -2, 1, 0, 0, -1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 92; CoefficientList[Series[Sum[x^(3 k + 2)/(1 + x^(3 k + 2)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 92}]

Formula

a(n) = Sum_{d|n, n/d==2 (mod 3)} (-1)^(d+1).

A368929 Dirichlet g.f.: zeta(s-2)^2 * (1 - 2^(3-s)) / zeta(s).

Original entry on oeis.org

1, -1, 17, -16, 49, -17, 97, -112, 225, -49, 241, -272, 337, -97, 833, -640, 577, -225, 721, -784, 1649, -241, 1057, -1904, 1825, -337, 2673, -1552, 1681, -833, 1921, -3328, 4097, -577, 4753, -3600, 2737, -721, 5729, -5488, 3361, -1649, 3697, -3856, 11025, -1057, 4417
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 12 2024

Keywords

Comments

Dirichlet convolution of A007434 and A162395.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[d^2 * MoebiusMu[k/d], {d, Divisors[k]}] * (-1)^(n/k + 1) * n^2/k^2, {k, Divisors[n]}], {n, 1, 100}]
    f[p_, e_] := p^(2*e)*(1 + e*(1 - 1/p^2)); f[2, e_] := -(3*e - 2)*2^(2*e - 2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 12 2024 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(p == 2, -(3*e-2)*2^(2*e-2), p^(2*e)*(1 + e*(1-1/p^2))));} \\ Amiram Eldar, Jan 12 2024

Formula

Sum_{k=1..n} a(k) ~ log(2) * n^3 / (3*zeta(3)).
Multiplicative with a(2^e) = -(3*e-2)*2^(2*e-2), and a(p^e) = p^(2*e)*(1 + e*(1-1/p^2)) for an odd prime p. - Amiram Eldar, Jan 12 2024

A099751 Number of ways to write n as differences of (-4)-gonal numbers. If pe(n):=1/2*n*((e-2)*n+(4-e)) is the n-th e-gonal number, then a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=-4.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 2, 1, 2, 0, 2, 3, 2, 0, 2, 2, 2, 0, 2, 2, 3, 0, 1, 2, 2, 0, 2, 4, 2, 0, 4, 1, 2, 0, 2, 4, 2, 0, 2, 2, 2, 0, 2, 3, 3, 0, 2, 2, 2, 0, 4, 4, 2, 0, 2, 2, 2, 0, 2, 5, 4, 0, 2, 2, 2, 0, 2, 2, 2, 0, 3, 2, 4, 0, 2, 6, 1, 0, 2, 2, 4, 0, 2, 4, 2, 0, 4, 2, 2, 0, 4, 4, 2, 0, 2, 3, 2, 0, 2, 4, 4
Offset: 1

Views

Author

Volker Schmitt (clamsi(AT)gmx.net), Nov 10 2004

Keywords

Examples

			G.f. = x + x^3 + x^4 + 2*x^5 + 2*x^7 + 2*x^8 + x^9 + 2*x^11 + x^12 + 2*x^13 + ...
a(5)=2 because there are two ways of differences: First pe(3)-pe(-2)=(-15)-(-20)=5 and second pe(1)-pe(2)=(1)-(-4)=5, for e=-4.
		

Crossrefs

Cf. A001227 for e in {3, -2, 6}, A048272 for e in {0, 1, 4, 8} and A035218 for e=-1.

Programs

  • Haskell
    a099751 n = product $ zipWith f (a027748_row n) (a124010_row n)
       where f 2 e = e - 1; f 3 e = 1; f _ e = e + 1
    -- Reinhard Zumkeller, Mar 20 2015
  • Maple
    res:=1; ifac:=op(ifactors(i))[2]; for pfac in ifac do; if pfac[1]=2 then res:=res*(pfac[2]-1); else if pfac[1]<>3 then res:=res*(pfac[2]+1); fi; fi; od; a(i):=res;
  • Mathematica
    a[ n_] := If[ n < 1, 0, If[ Divisible[n, 4], -1, 1] Sum[ KroneckerSymbol[ -3, d] (-1)^Quotient[ d, 3], {d, Divisors@n}]]; (* Michael Somos, Mar 19 2015 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%2==0, (valuation(n, 2) -1) * a(n / 2^valuation(n, 2)), if( n%3==0, a(n / 3^valuation(n, 3)), numdiv(n)))) }; /* Michael Somos, Sep 20 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, (-1)^(n%4 == 0) * sumdiv( n, d, (-1)^(d\3) * kronecker( -3, d)))}; /* Michael Somos, Nov 16 2011 */
    

Formula

Multiplicative with a(2^e) = e-1 if e>0, a(3^e) = 1, a(p^e) = e+1 if p>3.
Moebius transform is period 12 sequence [ 1, -1, 0, 1, 1, 0, 1, 1, 0, -1, 1, 0, ...].
G.f.: Sum_{k>0} (x^k - x^(2*k) + x^(4*k) + x^(5*k) + x^(7*k) + x^(8*k) - x^(10*k) + x^(11*k)) / (1 - x^(12*k)). - Michael Somos, Sep 20 2005
a(3*n) = a(n). a(4*n + 2) = 0. - Michael Somos, Nov 16 2011
a(4*n) = A035191(n). - Michael Somos, Mar 19 2015
From Amiram Eldar, Nov 30 2022: (Start)
Dirichlet g.f.: zeta(s)^2*(1 + 2^(1-2*s) - 2^(1-s))*(1 - 1/3^s).
Sum_{k=1..n} a(k) ~ n*log(n)/3 + (2*gamma - 1 + log(3)/2)*n/3, where gamma is Euler's constant (A001620). (End)

A258453 G.f.: Sum_{k>0} x^((k^2 + k)/2) / (1 + x^k).

Original entry on oeis.org

1, -1, 2, -1, 0, 0, 2, -1, -1, 0, 2, 0, 0, -2, 2, -1, 0, 1, 2, -2, 0, -2, 2, 0, 1, 0, 0, 0, 0, -2, 2, -1, 0, 0, 2, 1, 0, -2, 0, -2, 0, 2, 2, -2, 2, -2, 2, 0, -1, -1, 0, 0, 0, -2, 4, 0, 0, 0, 2, -2, 0, -2, 0, -1, 0, 2, 2, 0, 0, -2, 2, -1, 0, 0, 2, -2, -2, 0, 2
Offset: 1

Views

Author

Michael Somos, Nov 05 2015

Keywords

Examples

			G.f. = x - x^2 + 2*x^3 - x^4 + 2*x^7 - x^8 - x^9 + 2*x^11 - 2*x^14 + 2*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^((k^2 + k)/2) / (1 + x^k), {k, Sqrt[8 n + 1]}], {x, 0, n}]];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(8*n + 1), x^((k^2 + k)/2) / (1 + x^k), x * O(x^n)), n))};

A300188 a(n) = n! * [x^n] Product_{k>=1} 1/(1 + x^k)^(n/k).

Original entry on oeis.org

1, -1, 4, -39, 536, -9115, 185904, -4461877, 123647488, -3886461081, 136538590400, -5300491027711, 225313697972736, -10409021924850211, 519298241645107456, -27824560148201248125, 1593597443825288904704, -97153909607626767338353, 6281720886474120790582272
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 28 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of e.g.f. Product_{k>=1} 1/(1 + x^k)^(n/k) begins:
n = 0: (1),  0,   0,     0,     0,       0,        0,  ...
n = 1:  1, (-1),  1,    -5,    23,    -119,      619,  ...
n = 2:  1,  -2,  (4),  -16,    92,    -568,     3856,  ...
n = 3:  1,  -3,   9,  (-39),  243,   -1737,    13671,  ...
n = 4:  1,  -4,  16,   -80,  (536),  -4256,    37504,  ...
n = 5:  1,  -5,  25,  -145,  1055,  (-9115),   88075,  ...
n = 6:  1,  -6,  36,  -240,  1908,  -17784,  (185904), ...
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Product[1/(1 + x^k)^(n/k), {k, 1, n}], {x, 0, n}], {n, 0, 18}]

Formula

a(n) = n! * [x^n] exp(-n*Sum_{k>=1} A048272(k)*x^k/k).
a(n) ~ (-1)^n * c * d^n * n^n, where d = 1.3587950730244927060955... and c = 0.6449711831436950784... - Vaclav Kotesovec, Sep 08 2018

A307396 G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} x^k*A(x)^k/(1 + x^k).

Original entry on oeis.org

1, 1, 1, 4, 9, 25, 78, 235, 734, 2355, 7637, 25096, 83394, 279563, 944559, 3213254, 10996236, 37829956, 130759164, 453879479, 1581472334, 5529435704, 19393856909, 68217376618, 240586328527, 850553637256, 3013750513593, 10700805837614, 38068482070675, 135674217800041
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 9*x^4 + 25*x^5 + 78*x^6 + 235*x^7 + 734*x^8 + 2355*x^9 + 7637*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 30; A[] = 0; Do[A[x] = 1 + Sum[x^k A[x]^k /(1 + x^k), {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 30; A[] = 0; Do[A[x] = 1 + Sum[x^k Sum[(-1)^(k/d + 1) A[x]^d, {d, Divisors[k]}], {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} x^k * Sum_{d|k} (-1)^(k/d+1)*A(x)^d.

A317528 Expansion of Sum_{k>=1} mu(k)^2*x^k/(1 + x^k), where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, 0, 2, -2, 2, 0, 2, -2, 2, 0, 2, -4, 2, 0, 4, -2, 2, 0, 2, -4, 4, 0, 2, -4, 2, 0, 2, -4, 2, 0, 2, -2, 4, 0, 4, -4, 2, 0, 4, -4, 2, 0, 2, -4, 4, 0, 2, -4, 2, 0, 4, -4, 2, 0, 4, -4, 4, 0, 2, -8, 2, 0, 4, -2, 4, 0, 2, -4, 4, 0, 2, -4, 2, 0, 4, -4, 4, 0, 2, -4, 2, 0, 2, -8, 4, 0, 4, -4, 2, 0, 4, -4, 4, 0, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 30 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): seq(coeff(series(add(mobius(k)^2*x^k/(1+x^k),k=1..n), x,n+1),x,n),n=1..120); # Muniru A Asiru, Jul 30 2018
  • Mathematica
    nmax = 95; Rest[CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + MoebiusMu[k]^2 x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    Table[DivisorSum[n, (-1)^(n/# + 1) &, SquareFreeQ[#] &], {n, 95}]
    f[p_, e_] := 2; f[2, e_] := If[e == 1, 0, -2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 19 2022 *)
  • PARI
    A317528(n) = sumdiv(n,d,((-1)^(1+d))*issquarefree(n/d)); \\ Antti Karttunen, Dec 05 2021

Formula

G.f.: Sum_{k>=1} x^A005117(k)/(1 + x^A005117(k)).
L.g.f.: log(Product_{k>=1} (1 + mu(k)^2*x^k)^(1/k)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A008966(d).
If n is odd, a(n) = A034444(n).
Multiplicative with a(2) = 0, a(2^e) = -2 for e>1, and a(p^e) = 2 for p>2 and e>=1. - Amiram Eldar, Nov 19 2022

A317531 Expansion of Sum_{p prime, k>=1} x^(p^k)/(1 + x^(p^k)).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, -1, 2, 0, 1, -1, 1, 0, 2, -2, 1, -1, 1, -1, 2, 0, 1, -2, 2, 0, 3, -1, 1, -1, 1, -3, 2, 0, 2, -2, 1, 0, 2, -2, 1, -1, 1, -1, 3, 0, 1, -3, 2, -1, 2, -1, 1, -2, 2, -2, 2, 0, 1, -2, 1, 0, 3, -4, 2, -1, 1, -1, 2, -1, 1, -3, 1, 0, 3, -1, 2, -1, 1, -3, 4, 0, 1, -2, 2, 0, 2, -2, 1, -2, 2, -1, 2, 0, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 95; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + Boole[PrimePowerQ[k]] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    Table[DivisorSum[n, (-1)^(n/# + 1) &, PrimePowerQ[#] &], {n, 95}]
  • PARI
    A317531(n) = sumdiv(n,d,((-1)^(n/d+1))*(1==omega(d))); \\ Antti Karttunen, Sep 30 2018

Formula

G.f.: Sum_{k>=1} x^A246655(k)/(1 + x^A246655(k)).
L.g.f.: log(Product_{p prime, k>=1} (1 + x^(p^k))^(1/p^k)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A069513(d).
If n is odd, a(n) = A001222(n).

A327274 Dirichlet g.f.: 1 / (zeta(s)^2 * (1 - 2^(1 - s))).

Original entry on oeis.org

1, 0, -2, 1, -2, 0, -2, 2, 1, 0, -2, -2, -2, 0, 4, 4, -2, 0, -2, -2, 4, 0, -2, -4, 1, 0, 0, -2, -2, 0, -2, 8, 4, 0, 4, 1, -2, 0, 4, -4, -2, 0, -2, -2, -2, 0, -2, -8, 1, 0, 4, -2, -2, 0, 4, -4, 4, 0, -2, 4, -2, 0, -2, 16, 4, 0, -2, -2, 4, 0, -2, 2, -2, 0, -2, -2, 4, 0, -2, -8
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 22 2019

Keywords

Comments

Dirichlet inverse of A048272.
Moebius transform of A067856.

Crossrefs

Cf. A007427, A008683, A048272, A062503 (positions of 1's), A067856, A327268.

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[Sum[(-1)^j, {j, Divisors[n/d]}] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 80}]
    f[p_, e_] := Switch[e, 1, -2, 2, 1, , 0]; f[2, e] := 2^(e-2); f[2, 1] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
  • PARI
    A067856(n) = { my(k); if(n<1, 0, k=valuation(n, 2); moebius(n/2^k)*2^max(0, k-1)); }; \\ From A067856
    A327274(n) = sumdiv(n,d,moebius(n/d)*A067856(d));

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA048272(n/d) * a(d).
a(n) = Sum_{d|n} mu(n/d) * A067856(d).
a(n) = 0 if n == 2 (mod 4). - Bernard Schott, Dec 07 2021
Multiplicative with a(2) = 0, a(2^e) = 2^(e-2) for e >= 2, and for an odd prime p, a(p) = -2, a(p^2) = 1, and a(p^e) = 0 for e >= 3. - Amiram Eldar, Sep 15 2023

A329801 Expansion of Sum_{k>=1} x^(k*(k + 1)/2) / (1 + x^(k*(k + 1)/2)).

Original entry on oeis.org

1, -1, 2, -1, 1, -1, 1, -1, 2, 0, 1, -3, 1, -1, 3, -1, 1, -1, 1, -2, 3, -1, 1, -3, 1, -1, 2, 0, 1, -1, 1, -1, 2, -1, 1, -2, 1, -1, 2, -2, 1, -2, 1, -1, 4, -1, 1, -3, 1, 0, 2, -1, 1, -1, 2, -2, 2, -1, 1, -5, 1, -1, 3, -1, 1, 0, 1, -1, 2, 0, 1, -4, 1, -1, 3, -1, 1, 0, 1, -2, 2, -1, 1, -3, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[x^(k (k + 1)/2)/(1 + x^(k (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[(-1)^(n/d + 1) Boole[IntegerQ[Sqrt[8 d + 1]]], {d, Divisors[n]}], {n, 1, 85}]
  • PARI
    A329801(n) = sumdiv(n,d,((-1)^(1+(n/d))) * ispolygonal(d,3)); \\ Antti Karttunen, Jan 15 2025

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * theta_2(x^(k/2)) / (2 * x^(k/8)).
a(n) = Sum_{d|n} (-1)^(n/d + 1) * A010054(d).
Previous Showing 71-80 of 99 results. Next