cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 99 results. Next

A335021 a(n) = Sum_{d|n, 1 < d < n} (-1)^(d + 1).

Original entry on oeis.org

0, 0, 0, -1, 0, 0, 0, -2, 1, 0, 0, -2, 0, 0, 2, -3, 0, 0, 0, -2, 2, 0, 0, -4, 1, 0, 2, -2, 0, 0, 0, -4, 2, 0, 2, -3, 0, 0, 2, -4, 0, 0, 0, -2, 4, 0, 0, -6, 1, 0, 2, -2, 0, 0, 2, -4, 2, 0, 0, -4, 0, 0, 4, -5, 2, 0, 0, -2, 2, 0, 0, -6, 0, 0, 4, -2, 2, 0, 0, -6, 3, 0, 0, -4, 2, 0, 2, -4
Offset: 1

Views

Author

Ilya Gutkovskiy, May 19 2020

Keywords

Comments

Number of odd nontrivial divisors of n minus number of even nontrivial divisors of n.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(# + 1) &, 1 < # < n &], {n, 1, 88}]
    nmax = 88; CoefficientList[Series[Sum[(-1)^(k + 1) x^(2 k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d>1) && (dMichel Marcus, May 20 2020
    
  • Python
    from sympy import divisor_count
    def A335021(n): return 0 if n == 1 else (1-(m:=(~n & n-1).bit_length()))*divisor_count(n>>m)-((n&1)<<1) # Chai Wah Wu, Jul 01 2022

Formula

G.f.: Sum_{k>=2} (-1)^(k + 1) * x^(2*k) / (1 - x^k).
G.f.: - Sum_{k >= 2} x^(2*k)/(1 + x^k). - Peter Bala, Jan 12 2021
a(n) = A001227(n)*(1 - A007814(n)) - 1 + (-1)^n, if n > 1. - Sebastian Karlsson, Jan 14 2021

A338813 Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} (1+x^j)^(u/j).

Original entry on oeis.org

1, 0, 1, 4, 0, 1, -6, 16, 0, 1, 48, -30, 40, 0, 1, 0, 448, -90, 80, 0, 1, 1440, -840, 2128, -210, 140, 0, 1, -10080, 23532, -6720, 7168, -420, 224, 0, 1, 120960, -127008, 177868, -30240, 19488, -756, 336, 0, 1, 0, 2191104, -1018080, 892540, -100800, 45696, -1260, 480, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Nov 10 2020

Keywords

Comments

Also the Bell transform of A338814.

Examples

			exp(Sum_{n>0} u*A048272(n)*x^n/n) = 1 + u*x + u^2*x^2/2! + (4*u+u^3)*x^3/3! + ... .
Triangle begins:
       1;
       0,     1;
       4,     0,     1;
      -6,    16,     0,    1;
      48,   -30,    40,    0,    1;
       0,   448,   -90,   80,    0,   1;
    1440,  -840,  2128, -210,  140,   0, 1;
  -10080, 23532, -6720, 7168, -420, 224, 0, 1;
  ...
		

Crossrefs

Column k=1 gives A338814.
Row sums give A168243.

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, (n - 1)! * DivisorSum[n, (-1)^(# + 1) &]]; T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], Sum[a[j] * Binomial[n - 1, j - 1] * T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    {T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, (1+x^j+x*O(x^n))^(u/j)), n), k)}
    
  • PARI
    a(n) = if(n<1, 0, (n-1)!*sumdiv(n, d, (-1)^(d+1)));
    T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))

Formula

E.g.f.: exp(Sum_{n>0} u*A048272(n)*x^n/n).
T(n; u) = Sum_{k=1..n} T(n, k)*u^k is given by T(n; u) = u * (n-1)! * Sum_{k=1..n} A048272(k)*T(n-k; u)/(n-k)!, T(0; u) = 1.
T(n, k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} A048272(i_j)/i_j.

A345750 E.g.f.: Product_{k>=1} (1 + (exp(x) - 1)^k)^(1/k).

Original entry on oeis.org

1, 1, 2, 9, 49, 310, 2521, 25557, 290550, 3555041, 48104901, 741103946, 12825399313, 240202011881, 4747281446090, 98808864563065, 2194031697420057, 52582450760730398, 1357237338948268649
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Comments

Stirling transform of A168243.

Crossrefs

Programs

  • Mathematica
    max = 18; Range[0, max]! * CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k)^(1/k), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Jun 26 2021 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1+(exp(x)-1)^k)^(1/k))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, -sumdiv(k, d, (-1)^d)*(exp(x)-1)^k/k))))

Formula

E.g.f.: exp( Sum_{k>=1} A048272(k) * (exp(x) - 1)^k / k ).
a(n) = Sum_{k=0..n} Stirling2(n,k) * A168243(k).

A351619 a(n) = Sum_{p|n, p prime} (-1)^p.

Original entry on oeis.org

0, 1, -1, 1, -1, 0, -1, 1, -1, 0, -1, 0, -1, 0, -2, 1, -1, 0, -1, 0, -2, 0, -1, 0, -1, 0, -1, 0, -1, -1, -1, 1, -2, 0, -2, 0, -1, 0, -2, 0, -1, -1, -1, 0, -2, 0, -1, 0, -1, 0, -2, 0, -1, 0, -2, 0, -2, 0, -1, -1, -1, 0, -2, 1, -2, -1, -1, 0, -2, -1, -1, 0, -1, 0, -2, 0, -2, -1, -1, 0, -1, 0, -1, -1, -2, 0, -2, 0, -1, -1, -2, 0, -2, 0, -2, 0, -1, 0, -2, 0, -1
Offset: 1

Views

Author

Seiichi Manyama, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    A351619[n_] := 2*Boole[EvenQ[n]] - PrimeNu[n]; Array[A351619, 100] (* Paolo Xausa, Jan 28 2025 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, (-1)^f[k, 1]);
    
  • PARI
    my(N=99, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, isprime(k)*(-x)^k/(1-x^k))))
    
  • Python
    from sympy import primefactors
    def A351619(n): return (0 if n%2 else 2) - len(primefactors(n)) # Chai Wah Wu, Mar 02 2022

Formula

G.f.: Sum_{k>=1} (-x)^prime(k)/(1 - x^prime(k)).
a(n) = -A001221(n) if n is odd and a(n) = 2 - A001221(n) if n is even. - Chai Wah Wu, Mar 02 2022

A364343 Expansion of Sum_{k>0} k * x^k/(1 + x^k)^3.

Original entry on oeis.org

1, -1, 9, -12, 20, -12, 35, -60, 72, -30, 77, -132, 104, -56, 210, -256, 170, -117, 209, -320, 378, -132, 299, -672, 425, -182, 594, -588, 464, -360, 527, -1040, 858, -306, 910, -1224, 740, -380, 1170, -1640, 902, -672, 989, -1364, 1890, -552, 1175, -2928, 1470, -775, 1938, -1872, 1484, -1080, 2090
Offset: 1

Views

Author

Seiichi Manyama, Jul 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + 1)*(# + 1) &] * n/2; Array[a, 55] (* Amiram Eldar, Jul 20 2023 *)
  • PARI
    my(N=60, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1+x^k)^3))

Formula

a(n) = (n/2) * Sum_{d|n} (-1)^(d+1) * (d+1) = (n/2) * (A002129(n) + A048272(n)).

A364351 Expansion of Sum_{k>0} k^2 * x^k/(1 + x^k)^3.

Original entry on oeis.org

1, 1, 15, -6, 40, 12, 77, -60, 180, 30, 187, -120, 260, 56, 630, -376, 442, 117, 551, -340, 1218, 132, 805, -1104, 1325, 182, 1998, -672, 1276, 360, 1457, -2032, 2970, 306, 3290, -1710, 2072, 380, 4134, -3080, 2542, 672, 2795, -1672, 7830, 552, 3337, -6816, 4998, 775, 7038, -2340, 4240, 1080
Offset: 1

Views

Author

Seiichi Manyama, Jul 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(n/#+1) * (#+n) &] * n/2; Array[a, 55] (* Amiram Eldar, Jul 20 2023 *)
  • PARI
    my(N=60, x='x+O('x^N)); Vec(sum(k=1, N, k^2*x^k/(1+x^k)^3))

Formula

a(n) = (n/2) * Sum_{d|n} (-1)^(n/d+1) * (d+n) = (n/2) * (A000593(n) + n * A048272(n)).

A373335 Expansion of Sum_{k>=1} x^k / (1 + x^k + x^(2*k) + x^(3*k) + x^(4*k)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 2, 0, 1, -1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, -1, 1, 1, 2, 0, 2, -1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 2, 0, -1, 1, -1, 2, 0, 1, -1, 1, 1, 0, 2, 1, 1, 1, 0, 1, -1, 0, 1, 0, 0, 1, 1, 1, 0, 2, -1, 1, 1, 0, -1, 2, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 01 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=110, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1-x^(5*k))))
    
  • PARI
    a(n) = sumdiv(n, d, (d%5==1)-(d%5==2));

Formula

G.f.: Sum_{k>=1} x^k * (1 - x^k) / (1 - x^(5*k)).
a(n) = A001876(n) - A001877(n).

A373336 Expansion of Sum_{k>=1} x^k / (1 + x^k + x^(2*k) + x^(3*k) + x^(4*k) + x^(5*k) + x^(6*k)).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, -1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 2, 0, 1, -1, 1, 0, 1, 1, 0, 0, 1, -1, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 1, -1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, -1, 1, 1, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 01 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=110, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1-x^(7*k))))
    
  • PARI
    a(n) = sumdiv(n, d, (d%7==1)-(d%7==2));

Formula

G.f.: Sum_{k>=1} x^k * (1 - x^k) / (1 - x^(7*k)).
a(n) = A279061(n) - A363795(n).

A253951 A partial double sum of integers: a(n) = Sum_{x=1..n} Sum_{y=1..n} T(x,y), where T is the matrix product: T = A051731*A127093*Transpose(A054524) and T(n,1)=0 (* stands for matrix multiplication).

Original entry on oeis.org

0, 1, 5, 9, 20, 23, 42, 52, 69, 77, 113, 119, 165, 177, 190, 214, 279, 291, 366, 379, 399, 422, 517, 533, 599, 625, 679, 701, 829, 846, 986, 1035, 1069, 1105, 1137, 1164, 1339, 1380, 1417, 1449, 1646, 1674, 1883, 1918, 1955, 2008, 2239, 2274, 2420, 2462, 2515, 2559, 2827, 2874, 2929
Offset: 1

Views

Author

Mats Granvik, Jan 20 2015

Keywords

Comments

a(n) ~ log(A003418(n))*n, based on the comment by Hans Havermann in A048272 referring to an argument by Gareth McCaughan.
The exact relation is: lim_{n->Infinity} log(A003418(k))*n = Sum_{x=1..n} Sum_{y=1..k} T(x,y), where T is the matrix product: T = A051731*A127093*Transpose(A054524) and T(n,1)=0.
Compare a(n) to round(log(A003418)*n)= 0, 1, 5, 10, 20, 25, 42, 54, 70, 78,...

Programs

  • Maple
    with(LinearAlgebra):
    N:= 200:
    A051731:= Matrix(N,N,(n,k) -> `if`(n mod k = 0, 1, 0),shape=triangular[lower]):
    A127093:= Matrix(N,N,(n,k) -> `if`(n mod k = 0, k, 0), shape=triangular[lower]):
    A054524T:= Matrix(N,N,(k,n) -> `if`(n mod k = 0, numtheory:-mobius(k),0), shape=triangular[upper]):
    T:= A051731 . A127093 . A054524T:
    a[1]:= 0:
    for n from 2 to N do
      a[n]:= a[n-1] + add(T[i,n],i=1..n) + add(T[n,j],j=2..n-1)
    od:
    seq(a[n],n=1..N); # Robert Israel, Jan 20 2015
  • Mathematica
    nn = 55;
    Z = Table[ If[ Mod[n, k] == 0, 1, 0], {n, nn}, {k, nn}];
    A = Table[ If[ Mod[n, k] == 0, k, 0], {n, nn}, {k, nn}];
    B = Table[ If[ Mod[n, k] == 0, MoebiusMu[k], 0], {n, nn}, {k, nn}];
    MatrixForm[T = Z.A.Transpose[B]];
    T[[All, 1]] = 0;
    a = Table[ Total[ T[[1 ;; n, 1 ;; n]], 2], {n, nn}]
    (* shows a graph *) Show[ ListLinePlot[a], ListLinePlot[ Accumulate[ MangoldtLambda[ Range[ nn]]]]]

Formula

a(n) = Sum_{x=1..n} Sum_{y=1..n} T(x,y), where T is the matrix product: T=A051731*A127093*Transpose(A054524) and T(n,1)=0. (* stands for matrix multiplication)

A274352 Convolution of A015723 and A000700.

Original entry on oeis.org

0, 1, 2, 4, 7, 10, 18, 26, 36, 53, 76, 104, 140, 190, 252, 336, 437, 564, 732, 936, 1186, 1504, 1894, 2366, 2950, 3659, 4520, 5564, 6822, 8330, 10152, 12326, 14906, 17996, 21662, 25996, 31135, 37190, 44314, 52704, 62532, 74036, 87504, 103212, 121496, 142798
Offset: 0

Views

Author

R. J. Mathar, Jun 18 2016

Keywords

Comments

Also the convolution of A080054 and A048272.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
         [0, 2, -1, 2][1+irem(d, 4)], d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    g:= proc(n) option remember; add((-1)^(d+1), d=divisors(n)) end:
    a:= n-> add(b(j)*g(n-j), j=0..n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 18 2016
  • Mathematica
    q[n_, k_] := q[n, k] = If[n < k || k < 1, 0, If[n == 1, 1, q[n - k, k] + q[n - k, k - 1]]]; Table[Sum[SeriesCoefficient[Product[1 + x^j, {j, 1, k, 2}], {x, 0, k}] Sum[i q[#, i], {i, 1, Floor[(Sqrt[8 # + 1] - 1)/2]}] &[n - k], {k, 0, n}], {n, 0, 45}] (* Michael De Vlieger, Jun 18 2016, after Vaclav Kotesovec at A015723 and Vladimir Reshetnikov at A000700 *)

Formula

a(n) = Sum_{k=0..n} A015723(k)*A000700(n-k).
a(n) ~ log(2) * exp(Pi*sqrt(n/2)) / (Pi * 2^(3/4) * n^(1/4)). - Vaclav Kotesovec, Sep 14 2021
Previous Showing 81-90 of 99 results. Next