cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A171231 a(n) = (10*2^n + 3 - (-1)^n)/6.

Original entry on oeis.org

2, 4, 7, 14, 27, 54, 107, 214, 427, 854, 1707, 3414, 6827, 13654, 27307, 54614, 109227, 218454, 436907, 873814, 1747627, 3495254, 6990507, 13981014, 27962027, 55924054, 111848107, 223696214, 447392427, 894784854, 1789569707
Offset: 0

Views

Author

Paul Curtz, Dec 05 2009

Keywords

Comments

From 14, the last 2 digits are of period 4: repeat [14, 27, 54, 07]. - Paul Curtz, Nov 22 2024

Crossrefs

Cf. A000035, A000975, A048573, A136412 (1st bisection), 2*A136412 (2nd bisection).

Programs

  • Magma
    [( 10*2^n+3-(-1)^n )/6: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
  • Mathematica
    LinearRecurrence[{2,1,-2},{2,4,7},40] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    a(n)=(10<Charles R Greathouse IV, Jul 07 2011
    

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n >= 3.
a(n+1) - a(n) = A048573(n-1).
a(n) = 2*A000975(n+1) - 3*A000975(n-1).
a(n) - a(n-2) = 5*2^n.
a(n+1) - 2*a(n) = ((-1)^n-1)/2 = -A000035(n).
G.f.: ( 2-3*x^2 ) / ( (x-1)*(2*x-1)*(1+x) ). - R. J. Mathar, Jul 07 2011
a(n) = ceiling( (5/3)*(2^n) ). - Wesley Ivan Hurt, Jun 28 2013

Extensions

Definition replaced by the Lava formula of 2009. Contents converted to formulas. - R. J. Mathar, Jul 07 2011

A321373 Array T(n,k) read by antidiagonals where the first row is (-1)^k*A140966(k) and each subsequent row is obtained by adding A001045(k) to the preceding one.

Original entry on oeis.org

2, 2, -1, 2, 0, 3, 2, 1, 4, 1, 2, 2, 5, 4, 7, 2, 3, 6, 7, 12, 9, 2, 4, 7, 10, 17, 20, 23, 2, 5, 8, 13, 22, 31, 44, 41, 2, 6, 9, 16, 27, 42, 65, 84, 87, 2, 7, 10, 19, 32, 53, 86, 127, 172, 169, 2, 8, 11, 22, 37, 64, 107, 170, 257, 340, 343
Offset: 0

Views

Author

Paul Curtz, Nov 08 2018

Keywords

Comments

Array:
2, -1, 3, 1, 7, 9, 23, 41, 87, ... = (-1)^n*A140966(n)
2, 0, 4, 4, 12, 20, 44, 84, 172, ... = abs(A084247(n+1))
2, 1, 5, 7, 17, 31, 65, 127, 257, ... = A014551(n)
2, 2, 6, 10, 22, 42, 86, 170, 342, ... = A078008(n+2) = A014113(n+1)
2, 3, 7, 13, 27, 53, 107, 213, 427, ... = A048573(n)
2, 4, 8, 16, 32, 64, 128, 256, 512, ... = A000079(n+1)
2, 5, 9, 19, 37, 75, 149, 299, 597, ... = A062092(n)
2, 6, 10, 22, 42, 86, 170, 342, 682, ... = A078008(n+3) = A014113(n+2).
T(n+1,k) = (-1)^k*A140966(k) + (n+1)*A001045(k).
Every row T(n+1,k) has the signature (1,2).
T(0,k) = 2, -2, 2, -2, ... = (-1)^n*2.
T(n+1,k) - T(0,k) = (n+1)*A001045(n).
5*A001045(n) is not in the OEIS.

Examples

			Triangle a(n):
  2;
  2, -1;
  2,  0,  3;
  2,  1,  4,  1;
  2,  2,  5,  4,  7;
  2,  3,  6,  7, 12,  9;
  2,  4,  7, 10, 17, 20, 23;
  etc.
Row sums: 2, 1, 5, 8, 20, 39, 83, 166, 338, 677, 1361, 2724, ... = b(n+2).
With b(0) = 2 and b(1) = 0, b(n) = b(n-1) + 2*b(n-2)  + n - 4, n > 1.
b(n) = A001045(n) - A097065(n-1).
b(n) = b(n-2) + A000225(n-2).
		

Crossrefs

Programs

  • Mathematica
    T[_, 0] = 2;
    T[0, k_] := (2^k + 5(-1)^k)/3;
    T[n_ /; n>0, k_ /; k>0] := T[n, k] = T[n-1, k] + (2^k + (-1)^(k+1))/3;
    T[, ] = 0;
    Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)

A366987 Triangle read by rows: T(n, k) = -(2^(n - k)*(-1)^n + 2^k + (-1)^k)/3.

Original entry on oeis.org

-1, 0, 0, -2, -1, -2, 2, 1, -1, -2, -6, -3, -3, -3, -6, 10, 5, 1, -1, -5, -10, -22, -11, -7, -5, -7, -11, -22, 42, 21, 9, 3, -3, -9, -21, -42, -86, -43, -23, -13, -11, -13, -23, -43, -86, 170, 85, 41, 19, 5, -5, -19, -41, -85, -170, -342, -171, -87, -45, -27, -21, -27, -45, -87, -171, -342
Offset: 0

Views

Author

Paul Curtz and Thomas Scheuerle, Oct 31 2023

Keywords

Examples

			Triangle T(n, k) starts:
   -1
    0   0
   -2  -1  -2
    2   1  -1  -2
   -6  -3  -3  -3  -6
   10   5   1  -1  -5 -10
  -22 -11  -7  -5  -7 -11 -22
   42  21   9   3  -3  -9 -21 -42
   ...
Note the symmetrical distribution of the absolute values of the terms in each row.
		

Crossrefs

Rows sums: -A282577(n+2), if the conjectures from Colin Barker in A282577 are true.
First column: -(-1)^n * A078008(n).
Second column: (-1)^n * A001045(n).
Third column: -A140966(n).
Fourth column: (-1)^n * A155980(n+2).

Programs

  • Maple
    T := (n, k) -> -(2^(n-k)*(-1)^n + 2^k + (-1)^k)/3:
    seq(seq(T(n, k), k = 0..n), n = 0..10);  # Peter Luschny, Nov 02 2023
  • Mathematica
    A366987row[n_]:=Table[-(2^(n-k)(-1)^n+2^k+(-1)^k)/3,{k,0,n}];Array[A366987row,15,0] (* Paolo Xausa, Nov 07 2023 *)
  • PARI
    T(n, k) = (-2^(k+1) + 2*(-1)^(k+1) + (-1)^(n+1)*2^(1+n-k))/6 \\ Thomas Scheuerle, Nov 01 2023

Formula

T(n, 0) = -((-2)^n + 2)/3.
T(n, k+1) - T(n, k) = T(n-1, k) + (-1)^k.
T(2*n+1, n) = A001045(n).
T(2*n+1, n+1) = -A001045(n).
T(2*n, n+1) = -A048573(n-1), for n > 0.
Note that the definition of T extends to negative parameters:
T(2*n-2, n-1) = -A001045(n).
-2^n*Sum_{k=0..n} (-1)^k*T(-n, -k) = A059570(n+1).
-4^n*Sum_{k=0..2*n} T(-2*n, -k) = A020989(n).
-Sum_{k=0..n} (-1)^k*T(n, k) = A077898(n). See also A053088.
Sum_{k = 0..2*n} |T(2*n, k)| = (4^(n+1) - 1)/3.
Sum_{k = 0..2*n+1} |T(2*n+1, k)| = (1 + (-1)^n - 2^(2 + n) + 2^(1 + 2*n))/3.
G.f.: (-1 - x + x*y)/((1 - x)*(1 + 2*x)*(1 + x*y)*(1 - 2*x*y)). - Stefano Spezia, Nov 03 2023

Extensions

a(42) corrected by Paolo Xausa, Nov 07 2023

A355668 Array read by upwards antidiagonals T(n,k) = J(k) + n*J(k+1) where J(n) = A001045(n) is the Jacobsthal numbers.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 3, 3, 4, 3, 4, 4, 7, 8, 5, 5, 5, 10, 13, 16, 11, 6, 6, 13, 18, 27, 32, 21, 7, 7, 16, 23, 38, 53, 64, 43, 8, 8, 19, 28, 49, 74, 107, 128, 85, 9, 9, 22, 33, 60, 95, 150, 213, 256, 171, 10, 10, 25, 38, 71, 116, 193, 298, 427, 512, 341
Offset: 0

Views

Author

Paul Curtz, Jul 13 2022

Keywords

Examples

			Row n=0 is A001045(k), then for further rows we successively add A001045(k+1).
       k=0  k=2  k=3  k=4  k=5  k=6  k=7  k=8  k=9 k=10
  n=0:  0    1    1    3    5   11   21   43   85  171 ... = A001045
  n=1:  1    2    4    8   16   32   64  128  256  512 ... = A000079
  n=2:  2    3    7   13   27   53  107  213  427  853 ... = A048573
  n=3:  3    4   10   18   38   74  150  298  598 1194 ... = A171160
  n=4:  4    5   13   23   49   95  193  383  769 1535 ... = abs(A140683)
  ...
		

Crossrefs

Antidiagonal sums give A320933(n+1).

Programs

  • Mathematica
    T[n_, k_] := (2^k - (-1)^k + n*(2^(k + 1) + (-1)^k))/3; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 13 2022 *)

Formula

T(n, k) = (2^k - (-1)^k + n*(2^(k + 1) + (-1)^k))/3.
G.f.: (x*(y-1) - y)/((x - 1)^2*(y + 1)*(2*y - 1)). - Stefano Spezia, Jul 13 2022

A360033 Table T(n,k), n >= 1 and k >= 0, read by antidiagonals, related to Jacobsthal numbers A001045.

Original entry on oeis.org

1, 2, 1, 3, 3, 3, 4, 5, 7, 5, 5, 7, 11, 13, 11, 6, 9, 15, 21, 27, 21, 7, 11, 19, 29, 43, 53, 43, 8, 13, 23, 37, 59, 85, 107, 85, 9, 15, 27, 45, 75, 117, 171, 213, 171, 10, 17, 31, 53, 91, 149, 235, 341, 427, 341, 11, 19, 35, 61, 107, 181, 299, 469
Offset: 1

Views

Author

Philippe Deléham, Jan 22 2023

Keywords

Examples

			The array T(n,k), for n <= 1 and k >= 0, begins:
n = 1: 1,  1,  3,  5,  11,  21,  43, ... -> A001045(k+1)
n = 2: 2,  3,  7, 13,  27,  53, 107, ... -> A048573(k)
n = 3: 3,  5, 11, 21,  43,  85, 171, ... -> A001045(k+3)
n = 4: 4,  7, 15, 29,  59, 117, 235, ... -> ?
n = 5: 5,  9, 19, 37,  75, 149, 299, ... -> A062092(k+1)
n = 6: 6, 11, 23, 45,  91, 181, 363, ... -> ?
n = 7: 7, 13, 27, 53, 107, 213, 427, ... -> A048573(k+2)
		

Crossrefs

Columns: A000027, A005408, A004767, A004770, A106839 for k = 0, 1, 2, 3, 4.

Formula

T(n,k) = T(1,k) + (n-1)*2^k.
T(n,k) = 2*T(n, k-1) + (-1)^k.
T(n,k) = T(n-1,k) + 2^k.
T(n,k) = 2^k * n - A001045(k).
T(n,k) = T(n,k-1) +2*T(n,k-2).
Previous Showing 11-15 of 15 results.