cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A343795 Number of Dumont permutations of the fourth kind of length 2n avoiding the pattern 312.

Original entry on oeis.org

1, 1, 3, 10, 39, 174, 872, 4805, 28474, 178099, 1160173, 7803860, 53924841, 381640934, 2761331130, 20400560942, 153738854242, 1180631743440, 9229687049249, 73372263658451, 592476077260123, 4854377724124700, 40315729803287046, 339065862485375334, 2885324166565733641
Offset: 0

Views

Author

Alexander Burstein and Opel Jones, Apr 29 2021

Keywords

Comments

Dumont permutations of the fourth kind are permutations of even length where all deficiencies (drops) are even values at even positions.

Examples

			For n=2, a(2)=3 counts the permutations 1234, 1342, 1432.
		

References

  • O. Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, Ph.D. thesis, Howard University, 2019.

Crossrefs

Cf. A000108 (permutations avoiding 312), A024492, A048990, A110501 (length 2n Dumont permutations of 4th kind).

Programs

  • PARI
    seq(n)={my(h=sqrt(1-16*x + O(x*x^n)), F=sqrt((1-h)/(8*x)), G=(1-sqrt((1+h)/2))/(2*x), A=O(1)); forstep(k=n\3, 0, -1, my(f=Pol(F + O(x*x^k))); A = f/((1 - x*Pol(G + O(x^k)))^2 - x*f/(1 - x*Pol(G + O(x*x^k)) - x*f^2/(1 - x*A))) ); Vec(A + O(x*x^n))} \\ Andrew Howroyd, Apr 29 2021

Formula

Let F_k(x) be the truncation of the g.f. of A048990 to a polynomial of degree k. Let G_k(x) be the truncation of the g.f. of A024492 to a polynomial of degree k. Let G_{-1}(x) = 0. For k>=0, define A_k(x) recursively as follows: A_k(x) = F_k(x)/((1-x*G_{k-1}(x))^2-x*F_k(x)/(1-x*G_k(x)-x*F_k(x)^2/(1-x*A_{k+1}(x)))). Then A_0(x) is the g.f. of this sequence.

Extensions

Terms a(12) and beyond from Andrew Howroyd, Apr 29 2021

A349648 Expansion of g.f.: Catalan(x)/Catalan(-x).

Original entry on oeis.org

1, 2, 2, 8, 14, 64, 132, 640, 1430, 7168, 16796, 86016, 208012, 1081344, 2674440, 14057472, 35357670, 187432960, 477638700, 2549088256, 6564120420, 35223764992, 91482563640, 493132709888, 1289904147324, 6979724509184, 18367353072152, 99710350131200
Offset: 0

Views

Author

Alexander Burstein, Nov 23 2021

Keywords

Crossrefs

Cf. A000108, A001622, A048990 (bijection), A052707 (bijection), A006318, A079489, A246062, A333564.

Programs

  • Maple
    gf:= (c-> c(x)/c(-x))(x-> hypergeom([1/2, 1], [2], 4*x)):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 23 2021
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4x])/(Sqrt[1+4x]-1),{x,0,24}],x]

Formula

a(2*n) = A048990(n) = A000108(2*n), n>=0.
a(2*n+1) = A052707(n+1) = 2^(2*n+1)*A000108(n), n>=0.
G.f.: A(x) = C(x)/C(-x) = (1 - sqrt(1 - 4*x))/(sqrt(1 + 4*x) - 1), where C(x) is the g.f. of A000108.
G.f.: A(x) = F(x^2) + 2*x*F(x^2)^2 = (C(x) + C(-x))/2 + 2*x*C(4*x^2), where F(x) is the g.f. of A048990.
G.f.: A(-x) = 1/A(x).
G.f.: A(x) = R(x*C(-x)^2) = 1/R(-x*C(x)^2), where R(x) is the g.f. of A006318.
G.f.: A(x) = (1 + x*C(x)*C(-x))/(1 - x*C(x)*C(-x)), see A079489 for the expansion of C(x)*C(-x).
D-finite with recurrence n*(n-1)*(n+1)*a(n) -4*(n-1)*(8*n^2-32*n+35)*a(n-2) +64*(2*n-5)*(2*n-7)*(n-4)*a(n-4)=0. - R. J. Mathar, Mar 06 2022
Sum_{n>=0} 1/a(n) = 28/15 + 2*Pi/(9*sqrt(3)) + 64*arcsin(1/4)/(75*sqrt(15)) - 12*log(phi)/(25*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Apr 20 2023
G.f.: A(x) = exp( Sum_{n >= 1} binomial(4*n-2,2*n-1)*x^(2*n-1)/(2*n-1) ). - Peter Bala, Apr 28 2023

A376075 Number of North-East lattice paths from (0,0) to (n,n) that do not cross the diagonal y = x at any even point (2*k,2*k).

Original entry on oeis.org

1, 2, 6, 14, 52, 140, 558, 1598, 6604, 19588, 82780, 251212, 1077992, 3324760, 14427422, 45039422, 197122524, 621205076, 2737289748, 8691699524, 38510822360, 123045322024, 547682980716, 1759017606220, 7859796084984, 25355507376808, 113670929821304
Offset: 0

Views

Author

John Tyler Rascoe, Oct 08 2024

Keywords

Examples

			The path NENNEENE does not cross y = x, so it is counted under a(4) = 52.
The path NENNENNEEEEN crosses y = x at points (1,1) and (5,5), so it is counted under a(6) = 558.
		

Crossrefs

Programs

  • PARI
    C(x) = {(1-sqrt(1-4*x))/(2*x)}
    A(x) ={C(4*x)*C((x)*C(4*x))}
    B(x) = {sqrt(C(4*x))}
    D(x) = {1/sqrt(1-4*x)}
    E_x(N) = {my(x='x+O('x^N));  Vec(D(x)-2*((C(x)-1)*((x*A(x^2))^2-B(x^2)^2+3*B(x^2)-2))/((2-B(x^2))*(2-C(x))))}
    E_x(30)

Formula

G.f. D(x) - 2*((C(x) - 1)*((x*A(x^2))^2 - B(x^2)^2 + 3*B(x^2) - 2))/((2 - B(x^2))*(2 - C(x))), where A(x), B(x), C(x), and D(x) are the g.f.s for A024492, A048990, A000108, and A000984.

A382403 a(n) = Sum_{k=0..n} A039599(n,k)^3.

Original entry on oeis.org

1, 2, 36, 980, 33040, 1268568, 53105976, 2364239592, 110206067400, 5323547715200, 264576141331216, 13458185494436592, 697931136204820336, 36789784967375728400, 1966572261077797609200, 106400946932857148590800, 5817987630644593688220600, 321105713814359742307398480
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2025

Keywords

Comments

Let b_k(n) = Sum_{j=0..n} A039599(n,j)^k. b_1(n) = binomial(2*n,n) = A000984(n) and b_2(n) = binomial(4*n,2*n)/(2*n+1) = A048990(n).

Crossrefs

Programs

  • PARI
    a039599(n, k) = (2*k+1)/(n+k+1)*binomial(2*n, n-k);
    a(n) = sum(k=0, n, a039599(n, k)^3);

Formula

a(n) = binomial(2*n,n) * (4 * binomial(2*n,n)^2 - 3 * A112029(n)).
Previous Showing 21-24 of 24 results.