cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A159352 Primes of the form "1 [0]_n 3" - with zeros between 1 and 3.

Original entry on oeis.org

13, 103, 100003, 1000003, 100000000003, 100000000000000003, 1000000000000000003, 1000000000000000000000000000000000000003, 100000000000000000000000000000000000000000000000000000003
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 11 2009

Keywords

Examples

			1000000000000000000000000000000000000003 is a prime with 38 zeros between 1 and 3.
		

Crossrefs

Cf. A159031.
Cf. A049054 (numbers n such that 10^n + 3 is prime), A102006 (numbers n such that 10*10^n + 3 is prime), A011557 (powers of 10).

Programs

  • Magma
    [p: n in [1..100] | IsPrime(p) where p is 10^n+3 ]; // Klaus Brockhaus, Apr 12 2009
  • Maple
    select(isprime, [seq(10^k+3, k=1..998)]); # Robert Israel, Dec 28 2015

A102006 Indices of primes in sequence defined by A(0) = 13, A(n) = 10*A(n-1) - 27 for n > 0.

Original entry on oeis.org

0, 1, 4, 5, 10, 16, 17, 38, 55, 100, 104, 106, 122, 412, 425, 2606, 7667, 10469, 11020, 17752, 26926, 60775, 98287, 300475
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004

Keywords

Comments

Numbers n such that 10*10^n + 3 is prime.
Numbers n such that digit 1 followed by n >= 0 occurrences of digit 0 followed by digit 3 is prime.
Numbers corresponding to terms <= 425 are certified primes.
No other terms <99,999.

Examples

			100003 is prime, hence 4 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • PARI
    a=13;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-27)
    
  • PARI
    for(n=0,1500,if(isprime(10*10^n+3),print1(n,",")))

Formula

a(n) = A049054(n) - 1.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(22)=60775, a(23)=98287 from Robert Price, Mar 03 2011
a(24) from A049054 by Ray Chandler, May 01 2015

A110980 Integers n such that 10^n+99 is prime.

Original entry on oeis.org

1, 2, 4, 6, 13, 14, 16, 17, 19, 30, 31, 60, 68, 73, 113, 144, 276, 288, 364, 449, 473, 739, 833, 1171, 1732, 2292, 3912, 7673, 9458, 16982, 19751, 21479, 23837, 77726
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Sep 30 2005

Keywords

Comments

The next term, if one exists, is >100000. - Robert Price, Apr 25 2011
See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "10w99".

Examples

			If n=6, we have 10^6+99 = 1000000+99 = 1000099, which is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..400]| IsPrime(10^n+99)]; // Vincenzo Librandi, Nov 02 2014
  • Mathematica
    Select[Range[78000],PrimeQ[10^#+99]&] (* Harvey P. Dale, Aug 23 2013 *)

Extensions

a(1)=1 added by Vladimir Joseph Stephan Orlovsky, May 02 2008
a(29)-a(33) from Robert Price, Mar 22 2010
a(34)=77726 from Robert Price, Mar 03 2011

A101397 Numbers k such that 4*10^k+3 is prime.

Original entry on oeis.org

0, 1, 3, 7, 10, 40, 419, 449, 1737, 2245, 3131, 3813, 5345, 5659, 5681, 8410, 9097, 11293, 21061
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005

Keywords

Comments

See Kamada link for search limit and prime vs. PRP status.
a(20) > 2*10^5. - Robert Price, Jul 17 2015

Examples

			n = 1, 3, 7, 10 are members since 43, 4003, 40000003 and 40000000003 are prime numbers.
		

Crossrefs

Programs

Formula

a(n) = A101713(n-1) + 1.

Extensions

a(18)-a(19) from Kamada data by Robert Price, Dec 10 2010

A110918 Integers n such that 10^n+91 is a prime number.

Original entry on oeis.org

1, 2, 3, 4, 11, 12, 15, 19, 136, 144, 732, 5754, 6602, 23499, 39583, 74254, 93356, 94016
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005

Keywords

Comments

No additional terms < 100000.
See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "10091".

Examples

			n = 4 is a member: 10^4+91 = 10000+91 = 10091, which is prime.
		

Crossrefs

Programs

Extensions

a(1)=1 added by Vladimir Joseph Stephan Orlovsky, May 02 2008
a(12)-a(15) from Robert Price, Dec 12 2010
Edited by Ray Chandler, Dec 23 2010
a(16)=74254 from Robert Price, Mar 03 2011
a(17)=92178 and a(18)=94016 from Robert Price, Apr 19 2011
a(17)=93356 corrected by Robert Price, Apr 19 2011
a(12) corrected by Tyler Busby, May 03 2024

A107084 Integers k such that 10^k + 33 is prime.

Original entry on oeis.org

1, 3, 6, 9, 10, 31, 47, 70, 281, 366, 519, 532, 775, 1566, 1627, 2247, 2653, 4381, 4571, 7513, 10581, 13239, 15393, 72267, 105515, 215802
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Jun 08 2005

Keywords

Comments

The next term, if it exists, is > 39546. - Robert Price, Aug 21 2010
See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "10033".
a(26) > 3*10^5. - Robert Price, Oct 26 2023

Examples

			For k = 3 we get 10^3 + 33 = 1000 + 33 = 1033, which is prime, so 3 is a term.
		

Crossrefs

Extensions

a(20)-a(23) from Robert Price, Aug 21 2010
Edited by Ray Chandler, Dec 23 2010
a(24) from Robert Price, Jan 29 2011
a(26) from Robert Price, Oct 26 2023
a(25) from Kamada data by Tyler Busby, Apr 16 2024

A111021 Integers k such that 7*10^k + 31 is a prime number.

Original entry on oeis.org

1, 8, 11, 143, 203, 2727, 2911, 3339, 17039
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005

Keywords

Comments

See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "70031".
a(10) > 10^5. - Robert Price, Jan 28 2017

Examples

			k = 11 is a term because 7*10^11 + 31 = 7*100000000000 + 31 = 700000000000 + 31 = 700000000031, which is a prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | IsPrime(7*10^n+31)]; // Vincenzo Librandi, Jul 03 2016
  • Mathematica
    Select[Range[0, 10000], PrimeQ[7 10^# + 31] &] (* Vincenzo Librandi, Jul 03 2016 *)

Extensions

a(9) from Ray Chandler, Dec 23 2010
a(1) = 1 prepended by Vincenzo Librandi, Jul 03 2016

A257636 Numbers n such that the base 10 reversals of n and n+1 are both prime.

Original entry on oeis.org

2, 13, 16, 30, 31, 34, 37, 70, 73, 91, 97, 106, 112, 118, 124, 130, 133, 145, 151, 166, 181, 199, 300, 310, 346, 358, 361, 364, 370, 376, 382, 388, 391, 700, 709, 721, 727, 730, 739, 745, 751, 754, 757, 760, 763, 775, 778, 784, 787, 790, 904, 907, 916, 919
Offset: 1

Views

Author

Robert Israel, Nov 04 2015

Keywords

Comments

n such that n and n+1 are in A095179.
Leading 0's in the reversals are allowed.
Heuristically, the abundance of these numbers should be roughly similar to that of the twin primes. Thus the sequence should be infinite but the sum of the reciprocals should converge.
All terms == 1 (mod 3) except for 2 and 3*10^k where k is in A049054.

Examples

			13 is in the sequence because both 31 and 41 are prime.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) option remember; local x;
       x:= n mod 10;
       x*10^ilog10(n)+revdigs((n-x)/10);
    end proc:
    for i from 0 to 9 do revdigs(i):= i od:
    Rprimes:= select(isprime@revdigs, [$1..10^4]):
    Rprimes[select(t -> Rprimes[t+1]-Rprimes[t]=1, [$1..nops(Rprimes)-1])]; # Robert Israel, Nov 04 2015
  • Mathematica
    SequencePosition[Table[If[PrimeQ[IntegerReverse[n]],1,0],{n,1000}],{1,1}][[;;,1]] (* Harvey P. Dale, Jan 07 2024 *)
  • PARI
    for(n=1, 1e3, if(isprime(eval(concat(Vecrev(Str(n))))) && isprime(eval(concat(Vecrev(Str(n+1))))), print1(n, ", "))) \\ Altug Alkan, Nov 04 2015

A258932 Numbers k such that 10^k + 103 is prime.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 10, 11, 27, 35, 85, 169, 209, 221, 321, 347, 603, 610, 1229, 1391, 2171, 2303, 2679, 3977, 4545, 5721, 7090, 35877
Offset: 1

Views

Author

Vincenzo Librandi, Jun 15 2015

Keywords

Comments

a(29) > 60000. - Michael S. Branicky, Apr 27 2025

Examples

			For n = 3, a(3) = 10^3 + 103 = 1103, which is prime.
		

Crossrefs

Sequences of the type 10^n+k: A049054 (k=3), A088274 (k=7), A088275 (k=9), A095688 (k=13), A108052 (k=19), A108050 (k=21), A108312 (k=27), A107083 (k=31), A107084 (k=33), A135109 (k=37), A135108 (k=39), A108049 (k=43), A108054 (k=49), A135118 (k=51), A135119 (k=57), A135116 (k=61), A135115 (k=63), A135113 (k=67), A135114 (k=69), A135132 (k=73), A135131 (k=79), A137848 (k=81), A135117 (k=87), A110918 (k=91), A135112 (k=93), A135107 (k=97), A110980 (k=99), this sequence (k=103), A258933 (k=109), A165508 (k=111), A248349 (k=123456789), A248351 (k=987654321).

Programs

  • Magma
    [n: n in [1..600] | IsPrime(10^n+103)];
    
  • Mathematica
    Select[Range[5000], PrimeQ[10^# + 103] &]
  • PARI
    is(n)=ispseudoprime(10^n+103) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(26)-a(28) from Jens Kruse Andersen, Jun 23 2015

A363353 Numbers k such that 10^k + 3 is a semiprime.

Original entry on oeis.org

3, 4, 7, 8, 10, 15, 16, 21, 27, 30, 37, 42, 43, 54, 66, 77, 96, 114, 130, 132, 155, 156, 168, 182, 213, 294
Offset: 1

Views

Author

Robert Israel, Aug 16 2023

Keywords

Comments

a(27) >= 306. - Amiram Eldar, Aug 17 2023

Examples

			a(3) = 7 is a term because 10^7 + 3 = 13 * 769231 is a semiprime.
		

Crossrefs

Programs

  • Maple
    select(t -> numtheory:-bigomega(10^t+3) = 2, [$1..70]);

Extensions

a(18)-a(26) from Amiram Eldar, Aug 17 2023
Previous Showing 11-20 of 30 results. Next