cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A075431 Primes of the form n+mu(n), where mu is the Moebius function (A008683).

Original entry on oeis.org

2, 7, 11, 23, 29, 41, 47, 59, 83, 101, 107, 109, 113, 137, 167, 173, 179, 181, 211, 227, 229, 257, 263, 281, 317, 331, 347, 353, 359, 373, 383, 401, 409, 433, 463, 467, 479, 503, 547, 563, 571, 587, 601, 617, 641, 653, 677, 691, 709, 719, 761, 821, 829, 839, 853
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 15 2002

Keywords

Comments

Subsequence of A075430.

Crossrefs

Programs

  • PARI
    isok(p)={isprime(p) && (moebius(p+1) == -1 || moebius(p-1) == 1)} \\ Andrew Howroyd, Apr 20 2021

Extensions

Terms a(41) and beyond from Andrew Howroyd, Apr 20 2021

A089191 Primes p such that p+1 is cubefree.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 59, 61, 67, 73, 83, 89, 97, 101, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 233, 241, 251, 257, 277, 281, 283, 293, 307, 313, 317, 331, 337, 347, 349, 353, 373, 379, 389, 397, 401, 409
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Comments

The ratio of the count of primes p <= n such that p+1 is cubefree to the count of primes <= n converges to 0.69+ slightly higher than the p-1 variety.
More accurately, the density of this sequence within the primes is Product_{p prime} (1-1/(p^2*(p-1))) = 0.697501... (A065414) (Mirsky, 1949). - Amiram Eldar, Feb 16 2021

Examples

			43 is included because 43+1 = 2^2*11.
71 is omitted because 71+1 = 2^3*3^2.
		

Crossrefs

Programs

  • Maple
    filter:= t -> isprime(t) and max(map(s -> s[2], ifactors(t+1)[2]))<3:
    select(filter, [2,seq(i,i=3..1000,2)]); # Robert Israel, Mar 18 2018
  • Mathematica
    Select[Prime[Range[100]],Max[Transpose[FactorInteger[#+1]][[2]]]<3&] (* Harvey P. Dale, Jun 06 2013 *)
  • PARI
    is(n) = isprime(n) && vecmax(factor(n+1)[,2]) < 3 \\ Amiram Eldar, Feb 16 2021

A120068 Numbers n such that n-th prime + 1 is squarefree.

Original entry on oeis.org

1, 3, 6, 10, 12, 13, 18, 21, 26, 29, 30, 33, 37, 40, 42, 44, 50, 55, 59, 60, 65, 66, 71, 74, 77, 78, 79, 80, 82, 84, 88, 89, 97, 100, 104, 110, 112, 113, 116, 119, 121, 122, 123, 127, 130, 134, 135, 136, 139, 142, 145, 147, 148, 151, 158, 159, 160, 165, 168, 169, 172
Offset: 1

Views

Author

Zak Seidov, Aug 15 2006

Keywords

Crossrefs

Cf. A049097.

Programs

  • Mathematica
    Select[Range[200],SquareFreeQ[Prime[#]+1]&] (* Harvey P. Dale, Sep 07 2012 *)

Formula

a(n)=primepi(A049097(n))

A153214 Primes p such that p+-2 and p+-3 are not squarefree.

Original entry on oeis.org

47, 1447, 1847, 3701, 6653, 11273, 14947, 15727, 17053, 18493, 21661, 24923, 26647, 29153, 32789, 33023, 38873, 39323, 42437, 42923, 44053, 47527, 47977, 49853, 52027, 52153, 56747, 56873, 59929, 71147, 74189, 79427, 80953, 99277, 99713
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[ !SquareFreeQ[p-2]&&!SquareFreeQ[p+2]&&!SquareFreeQ[p-3]&&!SquareFreeQ[p+3],AppendTo[lst,p]],{n,3*7!}];lst
    Select[Prime[Range[10000]],NoneTrue[#+{-3,-2,2,3},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 27 2019 *)

A268612 Primes p such that p + 2 k, for k = 1..7 are squarefree.

Original entry on oeis.org

29, 83, 101, 191, 227, 389, 443, 479, 587, 641, 659, 677, 983, 1091, 1109, 1289, 1307, 1451, 1487, 2027, 2081, 2153, 2243, 2333, 2351, 2441, 2459, 2477, 2549, 2657, 2729, 2837, 2909, 2927, 2999, 3089, 3251, 3359, 3449, 3557, 3593, 4007
Offset: 1

Views

Author

Zak Seidov, Feb 08 2016

Keywords

Comments

Eight consecutive odd numbers starting with p are squarefree.
This is the longest set as p+16 in all cases is divisible by 9.
All terms are congruent to 11 mod 18.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(4500) | forall{k: k in [1..7] | IsSquarefree(p+2*k)}]; // Vincenzo Librandi, Feb 09 2016
  • Mathematica
    Select[Prime[Range[600]],AllTrue[#+2*Range[7],SquareFreeQ]&] (* Harvey P. Dale, Oct 19 2022 *)

A268614 Primes p such that p + 1 and p + 2 are squarefree.

Original entry on oeis.org

5, 13, 29, 37, 41, 101, 109, 113, 137, 157, 181, 193, 229, 257, 281, 317, 353, 389, 397, 401, 409, 433, 461, 509, 541, 569, 613, 617, 641, 653, 661, 677, 757, 761, 769, 797, 821, 829, 857, 877, 937, 941, 977, 1009, 1021, 1093, 1109, 1117, 1129, 1153, 1193
Offset: 1

Views

Author

Zak Seidov, Feb 08 2016

Keywords

Comments

All terms are == 1 mod 4, hence in all cases p+3 is divisible by 4 (and is not squarefree).

Crossrefs

Intersection of A049097 and A049233.

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | IsSquarefree(p+1) and IsSquarefree(p+2)]; // Vincenzo Librandi, Feb 09 2016
    
  • Mathematica
    Select[Prime[Range[1000]], SquareFreeQ[# + 1] && SquareFreeQ[# + 2] &]
  • PARI
    isok(p) = isprime(p) && issquarefree(p+1) && issquarefree(p+2); \\ Michel Marcus, Apr 01 2021

A340154 Primes p such that p == 5 (mod 6) and p+1 is squarefree.

Original entry on oeis.org

5, 29, 41, 101, 113, 137, 173, 257, 281, 317, 353, 389, 401, 461, 509, 569, 617, 641, 653, 677, 761, 797, 821, 857, 929, 941, 977, 1109, 1181, 1193, 1217, 1229, 1289, 1301, 1361, 1373, 1409, 1433, 1481, 1553, 1613, 1697, 1721, 1877, 1901, 1913, 1973, 2081, 2129
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2020

Keywords

Comments

Clary and Fabrykowski (2004) proved that this sequence is infinite, and that its relative density in the sequence of primes of the form 6*k+5 (A007528) is 4*A/5 = 0.29916465..., where A is Artin's constant (A005596).

Examples

			5 is a term since it is prime, 5 == 5 (mod 6), and 5+1 = 6 = 2*3 is squarefree.
		

Crossrefs

Intersection of A007528 and A049097.

Programs

  • Mathematica
    Select[Range[2000], Mod[#, 6] == 5 && PrimeQ[#] && SquareFreeQ[# + 1] &]
Previous Showing 11-17 of 17 results.