cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A051379 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -8, 1, 72, -17, 1, -720, 242, -27, 1, 7920, -3382, 539, -38, 1, -95040, 48504, -9850, 995, -50, 1, 1235520, -725592, 176554, -22785, 1645, -63, 1, -17297280, 11393808, -3197348, 495544, -45815, 2527, -77, 1, 259459200, -188204400, 59354028, -10630508, 1182769, -83720, 3682, -92, 1
Offset: 0

Views

Author

Keywords

Comments

a(n,m)= ^8P_n^m in the notation of the given reference with a(0,0) := 1. The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(8+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1. In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer for (exp(8*t),exp(t)-1).

Examples

			{1}; {-8,1}; {72,-17,1}; {-720,242,-27,1}; ... s(2,x)=72-17*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
		

Crossrefs

The first (m=0) column sequence is: A049388. Row sums (signed triangle): A001730(n+6)*(-1)^n. Row sums (unsigned triangle): A049389(n).

Programs

  • Haskell
    a051379 n k = a051379_tabl !! n !! k
    a051379_row n = a051379_tabl !! n
    a051379_tabl = map fst $ iterate (\(row, i) ->
       (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 8)
    -- Reinhard Zumkeller, Mar 12 2014
  • Mathematica
    a[n_, m_] := Pochhammer[m + 1, n - m] SeriesCoefficient[Log[1 + x]^m/(1 + x)^8, {x, 0, n}];
    Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)

Formula

a(n, m)= a(n-1, m-1) - (n+7)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n
E.g.f. for m-th column of signed triangle: ((log(1+x))^m)/(m!*(1+x)^8).
Triangle (signed) = [ -8, -1, -9, -2, -10, -3, -11, -4, -12, ...] DELTA A000035; triangle (unsigned) = [8, 1, 9, 2, 10, 3, 11, 4, 12, 5, ...] DELTA A000035; where DELTA is Deléham's operator defined in A084938.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,8), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008

Extensions

Typo fixed in data by Reinhard Zumkeller, Mar 12 2014

A051380 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -9, 1, 90, -19, 1, -990, 299, -30, 1, 11880, -4578, 659, -42, 1, -154440, 71394, -13145, 1205, -55, 1, 2162160, -1153956, 255424, -30015, 1975, -69, 1, -32432400, 19471500, -4985316, 705649, -59640, 3010, -84, 1, 518918400, -343976400, 99236556, -16275700, 1659889, -107800, 4354, -100, 1
Offset: 0

Keywords

Comments

a(n,m)= ^9P_n^m in the notation of the given reference with a(0,0) := 1. The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(9+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1. In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer for (exp(9*t),exp(t)-1).

Examples

			{1}; {-9,1}; {90,-19,1}; {-990,299,-30,1}; ... s(2,x)= 90-19*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
		

Crossrefs

The first (m=0) column sequence is: A049389. Row sums (signed triangle): A049388(n)*(-1)^n. Row sums (unsigned triangle): A049398(n).

Programs

  • Haskell
    a051380 n k = a051380_tabl !! n !! k
    a051380_row n = a051380_tabl !! n
    a051380_tabl = map fst $ iterate (\(row, i) ->
       (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 9)
    -- Reinhard Zumkeller, Mar 12 2014
  • Mathematica
    a[n_, m_] := Pochhammer[m + 1, n - m] SeriesCoefficient[Log[1 + x]^m/(1 + x)^9, {x, 0, n}];
    Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)

Formula

a(n, m)= a(n-1, m-1) - (n+8)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n
E.g.f. for m-th column of signed triangle: ((log(1+x))^m)/(m!*(1+x)^9).
Triangle (signed) = [ -9, -1, -10, -2, -11, -3, -12, -4, -13, ...] DELTA A000035; triangle (unsigned) = [9, 1, 10, 2, 11, 3, 12, 4, 13, 5, ...] DELTA A000035; where DELTA is Deléham's operator defined in A084938.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,9), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008

A167569 The lower left triangle of the ED2 array A167560.

Original entry on oeis.org

1, 2, 4, 6, 16, 32, 24, 80, 192, 384, 120, 480, 1344, 3072, 6144, 720, 3360, 10752, 27648, 61440, 122880, 5040, 26880, 96768, 276480, 675840, 1474560, 2949120, 40320, 241920, 967680, 3041280, 8110080, 19169280, 41287680, 82575360
Offset: 1

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

We discovered that the numbers that appear in the lower left triangle of the ED2 array A167560 (m <= n) behave in a regular way, see the formula below. This rather simple regularity doesn't show up in the upper right triangle of the ED2 array (m > n).

Examples

			The first few triangle rows are:
[1]
[2, 4]
[6, 16, 32]
[24, 80, 192, 384]
[120, 480, 1344, 3072, 6144]
[720, 3360, 10752, 27648, 61440, 122880]
		

Crossrefs

A167560 is the ED2 array.
A047053, 2*A034177 and A167570 are the first three right hand triangle columns.
A000142, 4*A001715, 32*A001725, 384* A049388 and 6144* A049398 are the first five left hand triangle columns.
A167571 equals the row sums.

Programs

  • Maple
    a := proc(n, m): 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 23 2012
  • Mathematica
    Flatten[Table[4^(m - 1)*(m - 1)!*(n + m - 1)!/(2*m - 1)!, {n, 1, 50}, {m, n}]] (* G. C. Greubel, Jun 16 2016 *)

Formula

a(n,m) = 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)!.

A257606 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 4.

Original entry on oeis.org

1, 4, 4, 16, 40, 16, 64, 296, 296, 64, 256, 1928, 3552, 1928, 256, 1024, 11688, 34808, 34808, 11688, 1024, 4096, 67656, 302352, 487312, 302352, 67656, 4096, 16384, 379240, 2423016, 5830000, 5830000, 2423016, 379240, 16384, 65536, 2076424, 18330496, 62617144, 93280000, 62617144, 18330496, 2076424, 65536
Offset: 0

Author

Dale Gerdemann, May 03 2015

Keywords

Examples

			Triangle begins as:
      1;
      4,      4;
     16,     40,      16;
     64,    296,     296,      64;
    256,   1928,    3552,    1928,     256;
   1024,  11688,   34808,   34808,   11688,    1024;
   4096,  67656,  302352,  487312,  302352,   67656,   4096;
  16384, 379240, 2423016, 5830000, 5830000, 2423016, 379240, 16384;
		

Crossrefs

Cf. A008292, A049388 (row sums), A256890, A257180, A257607.
Similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,1,4], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
  • Sage
    def T(n,k,a,b): # A257606
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,1,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022

Formula

T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 4.
Sum_{k=0..n} T(n, k) = A049388(n).
T(n,0) = T(n,n) = 4^n. - Georg Fischer, Oct 02 2021
From G. C. Greubel, Mar 24 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 1, and b = 4.
T(n, n-k) = T(n, k).
T(n, 1) = 8*5^n - 4^n*(8+n).
T(n, 2) = 2*((56 +15*n +n^2)*4^(n-1) - 4*(8+n)*5^n + 3*6^(n+1)). (End)

Extensions

a(3) corrected by Georg Fischer, Oct 02 2021

A143499 Triangle of unsigned 4-Lah numbers.

Original entry on oeis.org

1, 8, 1, 72, 18, 1, 720, 270, 30, 1, 7920, 3960, 660, 44, 1, 95040, 59400, 13200, 1320, 60, 1, 1235520, 926640, 257400, 34320, 2340, 78, 1, 17297280, 15135120, 5045040, 840840, 76440, 3822, 98, 1, 259459200, 259459200, 100900800, 20180160, 2293200
Offset: 4

Author

Peter Bala, Aug 25 2008

Keywords

Comments

This is the case r = 4 of the unsigned r-Lah numbers L(r;n,k). The unsigned 4-Lah numbers count the partitions of the set {1,2,...,n} into k ordered lists with the restriction that the elements 1, 2, 3 and 4 belong to different lists. For other cases see A105278 (r = 1), A143497 (r = 2 and comments on the general case) and A143498 (r = 3).
The unsigned 4-Lah numbers are related to the 4-Stirling numbers: the lower triangular array of unsigned 4-Lah numbers may be expressed as the matrix product St1(4) * St2(4), where St1(4) = A143493 and St2(4) = A143496 are the arrays of 4-restricted Stirling numbers of the first and second kind respectively. An alternative factorization for the array is as St1 * P^6 * St2, where P denotes Pascal's triangle, A007318, St1 is the triangle of unsigned Stirling numbers of the first kind, abs(A008275) and St2 denotes the triangle of Stirling numbers of the second kind, A008277.

Examples

			Triangle begins
n\k|......4......5......6......7......8......9
==============================================
4..|......1
5..|......8......1
6..|.....72.....18......1
7..|....720....270.....30......1
8..|...7920...3960....660.....44......1
9..|..95040..59400..13200...1320.....60......1
...
T(5,4) = 8. The partitions of {1,2,3,4,5} into 4 ordered lists, such that the elements 1, 2, 3 and 4 lie in different lists, are: {1}{2}{3}{4,5} and {1}{2}{3}{5,4}, {1}{2}{4}{3,5} and {1}{2}{4}{5,3}, {1}{3}{4}{2,5} and {1}{3}{4}{5,2}, {2}{3}{4}{1,5} and {2}{3}{4}{5,1}.
		

Crossrefs

Cf. A007318, A008275, A008277, A049388 (column 4), A105278 (unsigned Lah numbers), A143493, A143496, A143497, A143498.

Programs

  • Maple
    with combinat: T := (n, k) -> (n-4)!/(k-4)!*binomial(n+3,k+3): for n from 4 to 13 do seq(T(n, k), k = 4..n) end do;
  • Mathematica
    T[n_, k_] := (n-4)!/(k-4)!*Binomial[n+3, k+3]; Table[T[n, k], {n, 4, 10}, {k, 4, n}] // Flatten (* Amiram Eldar, Nov 26 2018 *)

Formula

T(n,k) = (n-4)!/(k-4)!*binomial(n+3,k+3), n,k >= 4.
Recurrence: T(n,k) = (n+k-1)*T(n-1,k) + T(n-1,k-1) for n,k >= 4, with the boundary conditions: T(n,k) = 0 if n < 4 or k < 4; T(4,4) = 1.
E.g.f. for column k: Sum_{n >= k} T(n,k)*t^n/(n-4)! = 1/(k-4)!*t^k/(1-t)^(k+4) for k >= 4.
E.g.f: Sum_{n = 4..inf} Sum_{k = 4..n} T(n,k)*x^k*t^n/(n-4)! = (x*t)^4/(1-t)^8*exp(x*t/(1-t)) = (x*t)^4*(1 + (8+x)*t +(72+18*x+x^2)*t^2/2! + ...).
Generalized Lah identity: (x+7)*(x+8)*...*(x+n+2) = Sum_{k = 4..n} T(n,k)*(x-1)*(x-2)*...*(x-k+4).
The polynomials 1/n!*Sum_{k = 4..n+4} T(n+4,k)*(-x)^(k-4) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,7,x).
Array = A132493* A143496 = abs(A008275) * ( A007318 )^6 * A008277 (apply Theorem 10 of [Neuwirth]). Array equals exp(D), where D is the array with the quadratic sequence (8,18,30,44, ... ) on the main subdiagonal and zeros everywhere else.

A161742 Third left hand column of the RSEG2 triangle A161739.

Original entry on oeis.org

1, 4, 13, 30, -14, -504, 736, 44640, -104544, -10644480, 33246720, 5425056000, -20843695872, -5185511654400, 23457840537600, 8506857655296000, -44092609863966720, -22430879475779174400, 130748316971139072000
Offset: 2

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Crossrefs

Equals third left hand column of A161739 (RSEG2 triangle).
Other left hand columns are A129825 and A161743.
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.
A001710 (n!/2!), A001715 (n!/3!), A001720 (n!/4!), A001725 (n!/5!), A001730 (n!/6!), A049388 (n!/7!), A049389 (n!/8!), A049398 (n!/9!), A051431 (n!/10!) appear in Maple program.

Programs

  • Maple
    nmax:=21; for n from 0 to nmax do A008955(n,0):=1 end do: for n from 0 to nmax do A008955(n,n):=(n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n,m):= A008955(n-1,m-1)*n^2+A008955(n-1,m) end do: end do: for n from 1 to nmax do A028246(n,1):=1 od: for n from 1 to nmax do A028246(n,n):=(n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n,m):=m*A028246(n-1,m)+(m-1)*A028246(n-1,m-1) od: od: for n from 2 to nmax do a(n):=sum(((-1)^k/((k+1)!*(k+2)!)) *(n!)*A028246(n,k+2)* A008955(k+1,k),k=0..n-2) od: seq(a(n),n=2..nmax);

Formula

a(n) = sum(((-1)^k/((k+1)!*(k+2)!))*(n!)*A028246(n, k+2)*A008955(k+1, k), k=0..n-2)

A161743 Fourth left hand column of the RSEG2 triangle A161739.

Original entry on oeis.org

1, 10, 73, 425, 1561, -2856, -73520, 380160, 15376416, -117209664, -7506967104, 72162155520, 7045087741056, -80246202992640, -11448278791372800, 149576169325363200, 30017051616972275712, -440857664887810867200
Offset: 3

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Crossrefs

Equals fourth left hand column of A161739 (RSEG2 triangle).
Other left hand columns are A129825 and A161742.
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.
A001710 (n!/2!), A001715 (n!/3!), A001720 (n!/4!), A001725 (n!/5!), A001730 (n!/6!), A049388 (n!/7!), A049389 (n!/8!), A049398 (n!/9!), A051431 (n!/10!) appear in Maple program.

Programs

  • Maple
    nmax:=21; for n from 0 to nmax do A008955(n,0):=1 end do: for n from 0 to nmax do A008955(n,n):=(n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n,m):= A008955(n-1,m-1)*n^2+A008955(n-1,m) end do: end do: for n from 1 to nmax do A028246(n,1):=1 od: for n from 1 to nmax do A028246(n,n):=(n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n,m):=m*A028246(n-1,m)+(m-1)*A028246(n-1,m-1) od: od: for n from 3 to nmax do a(n) := sum(((-1)^k/((k+2)!*(k+3)!))*(n!)*A028246(n,k+3)* A008955(k+2,k), k=0..n-3) od: seq(a(n),n=3..nmax);

Formula

a(n) = sum(((-1)^k/((k+2)!*(k+3)!))*(n!)*A028246(n, k+3)*A008955(k+2, k), k = 0..n-3).

A162995 A scaled version of triangle A162990.

Original entry on oeis.org

1, 3, 1, 12, 4, 1, 60, 20, 5, 1, 360, 120, 30, 6, 1, 2520, 840, 210, 42, 7, 1, 20160, 6720, 1680, 336, 56, 8, 1, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 1814400, 604800, 151200, 30240, 5040, 720, 90, 10, 1
Offset: 1

Author

Johannes W. Meijer, Jul 27 2009

Keywords

Comments

We get this scaled version of triangle A162990 by dividing the coefficients in the left hand columns by their 'top-values' and then taking the square root.
T(n,k) = A173333(n+1,k+1), 1 <= k <= n. - Reinhard Zumkeller, Feb 19 2010
T(n,k) = A094587(n+1,k+1), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012

Examples

			The first few rows of the triangle are:
[1]
[3, 1]
[12, 4, 1]
[60, 20, 5, 1]
		

Crossrefs

Cf. A094587.
A056542(n) equals the row sums for n>=1.
A001710, A001715, A001720, A001725, A001730, A049388, A049389, A049398, A051431 are related to the left hand columns.
A000012, A009056, A002378, A007531, A052762, A052787, A053625 and A159083 are related to the right hand columns.

Programs

  • Haskell
    a162995 n k = a162995_tabl !! (n-1) !! (k-1)
    a162995_row n = a162995_tabl !! (n-1)
    a162995_tabl = map fst $ iterate f ([1], 3)
       where f (row, i) = (map (* i) row ++ [1], i + 1)
    -- Reinhard Zumkeller, Jul 04 2012
  • Maple
    a := proc(n, m): (n+1)!/(m+1)! end: seq(seq(a(n, m), m=1..n), n=1..9); # Johannes W. Meijer, revised Nov 23 2012
  • Mathematica
    Table[(n+1)!/(m+1)!, {n, 10}, {m, n}] (* Paolo Xausa, Mar 31 2024 *)

Formula

a(n,m) = (n+1)!/(m+1)! for n = 1, 2, 3, ..., and m = 1, 2, ..., n.

A094646 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -2, 1, 2, -3, 1, 0, 2, -3, 1, 0, 2, -1, -2, 1, 0, 4, 0, -5, 0, 1, 0, 12, 4, -15, -5, 3, 1, 0, 48, 28, -56, -35, 7, 7, 1, 0, 240, 188, -252, -231, 0, 42, 12, 1, 0, 1440, 1368, -1324, -1638, -231, 252, 114, 18, 1, 0, 10080, 11016, -7900, -12790, -3255, 1533, 1050, 240, 25, 1
Offset: 0

Author

Vladeta Jovovic, May 17 2004

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [ -2, 1, -1, 2, 0, 3, 1, 4, 2, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 23 2006
From Wolfdieter Lang, Jun 23 2011: (Start)
The row polynomials s(n,x):=Sum_{k=0..n} T(n,k)*x^k satisfy risefac(x-2,n)=s(n,x), with the rising factorials risefac(x-2,n):=Product_{j=0..n-1} (x-2+j), n >= 1, risefac(x-2,0)=1. Compare this with the formula risefac(x,n)=|S1|(n,x), with the row polynomials |S1|(n,x) of A132393 (unsigned Stirling1).
This is the third triangle of an a-family of Sheffer arrays, call them |S1|(a), with e.g.f. of the row polynomials |S1|(a;x;z) = ((1-z)^a)*exp(-x*log(1-z)). In the notation showing the column e.g.f.s this is Sheffer ((1-z)^a,-log(1-z)). In the umbral notation (see the Roman reference, given under A094645) this is called Sheffer for (exp(a*t),1-exp(-t)). For a=0 this becomes the unsigned Stirling1 triangle |S1|(0) = A132393 with row polynomials |S1|(0;n,x) =: s1(n,x).
E.g.f. column number k (with leading zeros): ((1-x)^a)*((-log(1-x))^k)/k!, k >= 0.
E.g.f. for row sums is (1-x)^(a-1), and the e.g.f. for the alternating row sums is (1-x)^(a+1).
Row polynomial recurrence:
|S1|(a;n,x)=(x+(n-1-a))*|S1|(a;n-1,m), |S1|(a;0,x)=1.
Meixner identity (see the reference under A060338):
|S1|(a;n,x) - |S1|(a;n,x-1) = n*|S1|(a;n-1,x), n >= 1,
Also (from the corollary 3.7.2 on p. 50 of the Roman reference): |S1|(a;n,x) = (x-a)*|S1|(a;n-1,x+1), n >= 1.
Recurrence: |S1|(a;n,k) = |S1|(a;n-1,k-1) + (n-(a+1))*|S1|(a;n-1,k); |S1|(a;n,k)=0 if n < m, |S1|(a;n,-1)=0, |S1|(a;0,0)=1.
Connection to |Stirling1|=|S1|(0):
|S1|(a;n,k) = Sum_{p=0..a} |S1|(a;a,p)*abs(Stirling1(n-a,k-p)), n >= a.
The exponential convolution identity is
|S1|(a;n,x+y) = Sum_{k=0..n} binomial(n,k)*|S1|(a;k,y)*s1(n-k,x), n >= 0, with symmetry x <-> y.
The Sheffer a- and z-sequences are (see the W. Lang link under A006232): Sha(a;n)=A164555(n)/A027642(n) (independent of a) with e.g.f. x/(1-exp(-x)), and the z-sequence has e.g.f. (exp(a*x)-1)/(exp(-x)-1).
The inverse Sheffer matrix has e.g.f. exp(a*z)*exp(x*(1-exp(-z))), in short notation (exp(a*z),1-exp(-z)),
(or in umbral notation ((1-t)^a,-log(1-t))).
(End)

Examples

			Triangle begins
   1;
  -2,  1;
   2, -3,  1;
   0,  2, -3,  1;
   0,  2, -1, -2,  1;
   0,  4,  0, -5,  0,  1;
   ...
risefac(x-2,3) = (x-2)*(x-1)*x = 2*x-3*x^2+x^3.
-1 = T(4,2) = T(3,1) + 1*T(3,2) =  2 + (-3).
T(4,3) = 2*abs(S1(2,3)) - 3*abs(S1(2,2)) + 1*abs(S1(2,1)) = 2*0 - 3*1 + 1*1 = -2.
		

Crossrefs

Programs

  • Maple
    A094646_row := n -> seq((-1)^(n-k)*coeff(expand(pochhammer(x-n+3, n)), x, k), k=0..n): seq(print(A094646_row(n)), n = 0..6); # Peter Luschny, May 16 2013
  • Mathematica
    Flatten[ Table[ CoefficientList[ Pochhammer[x-2, n], x], {n, 0, 10}]] (* Jean-François Alcover, Sep 26 2011 *)

Formula

E.g.f.: (1-y)^(2-x).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000142(n+1), A001710(n+2), A001715(n+3), A001720(n+4), A001725(n+5), A001730(n+6), A049388(n), A049389(n), A049398(n), A051431(n) for x = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 respectively. - Philippe Deléham, Nov 13 2007
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then |T(n,i)| = |f(n,i,-2)|, for n=1,2,...; i=0..n. - Milan Janjic, Dec 21 2008
From Wolfdieter Lang, Jun 23 2011: (Start)
risefac(x-2,n) = Sum_{k=0..n} T(n,k)*x^k, n >= 0, with the rising factorials (see a comment above).
Recurrence: T(n,k) = T(n-1,k-1) + (n-3)*T(n-1,k); T(n,k)=0 if n < m, T(n,-1)=0, T(0,0)=1.
T(n,k) = 2*abs(S1(n-2,k)) - 3*abs(S1(n-2,k-1)) + abs(S1(n-2,k-2)), n >= 2, with S1(n,k) = Stirling1(n,k) = A048994(n,k).
E.g.f. column number k (with leading zeros):
((1-x)^2)*((-log(1-x))^k)/k!, k >= 0.
E.g.f. for row sums is 1-x, i.e., [1,-1,0,0,...],
and the e.g.f. for the alternating row sums is (1-x)^3. i.e., [1,-3,3,1,0,0,...]. (End)

A176734 a(n) = (n+7)*a(n-1) + (n-1)*a(n-2), a(-1)=0, a(0)=1.

Original entry on oeis.org

1, 8, 73, 746, 8425, 104084, 1395217, 20157542, 312129649, 5155334720, 90449857081, 1679650774658, 32908313146393, 678322072223756, 14672571587601985, 332293083938376254, 7862829504396683617, 194024597448534426872, 4984283037788104293289, 133083801736564331309210
Offset: 0

Author

Wolfdieter Lang, Jul 14 2010

Keywords

Comments

a(n) enumerates the possibilities for distributing n beads, n>=1, labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and k=8 indistinguishable, ordered, fixed cords, each allowed to have any number of beads. Beadless necklaces as well as beadless cords contribute a factor 1 in the counting, e.g., a(0):= 1*1 =1. See A000255 for the description of a fixed cord with beads. This produces for a(n) the exponential (aka binomial) convolution of the subfactorial sequence {A000166(n)} and the sequence {A049388(n) = (n+7)!/7!}. See the necklaces and cords problem comment in A000153. Therefore the recurrence with inputs holds. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010).

Examples

			Necklaces and 8 cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively !4*1,binomial(4,3)*!3*c8(1), (binomial(4,2)*!2)*c8(2), and 1*c8(4) with the subfactorials !n:=A000166(n) (see the necklace comment there) and the c8(n):=A049388(n) numbers for the pure 8-cord problem (see the remark on the e.g.f. for the k cords problem in A000153; here for k=8: 1/(1-x)^8). This adds up as 9 + 4*2*8 + (6*1)*72 + 7920 = 8425 = a(4).
		

Crossrefs

Cf. A176733 (necklaces and k=7 cords).

Programs

  • Mathematica
    nxt[{n_,a_,b_}]:={n+1,b,(n+8)b+n*a}; Transpose[NestList[nxt,{1,1,8},20]][[2]] (* Harvey P. Dale, Mar 19 2013 *)
    Table[(-1)^n HypergeometricPFQ[{9, -n}, {}, 1], {n, 0, 20}] (* Benedict W. J. Irwin, May 29 2016 *)

Formula

E.g.f. (exp(-x)/(1-x))*(1/(1-x)^8) = exp(-x)/(1-x)^9, equivalent to the given recurrence.
a(n) = A086764(n+8,8).
a(n) = (-1)^n*2F0(9,-n;;1). - Benedict W. J. Irwin, May 29 2016
Previous Showing 11-20 of 25 results. Next