cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A094646 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -2, 1, 2, -3, 1, 0, 2, -3, 1, 0, 2, -1, -2, 1, 0, 4, 0, -5, 0, 1, 0, 12, 4, -15, -5, 3, 1, 0, 48, 28, -56, -35, 7, 7, 1, 0, 240, 188, -252, -231, 0, 42, 12, 1, 0, 1440, 1368, -1324, -1638, -231, 252, 114, 18, 1, 0, 10080, 11016, -7900, -12790, -3255, 1533, 1050, 240, 25, 1
Offset: 0

Views

Author

Vladeta Jovovic, May 17 2004

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [ -2, 1, -1, 2, 0, 3, 1, 4, 2, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 23 2006
From Wolfdieter Lang, Jun 23 2011: (Start)
The row polynomials s(n,x):=Sum_{k=0..n} T(n,k)*x^k satisfy risefac(x-2,n)=s(n,x), with the rising factorials risefac(x-2,n):=Product_{j=0..n-1} (x-2+j), n >= 1, risefac(x-2,0)=1. Compare this with the formula risefac(x,n)=|S1|(n,x), with the row polynomials |S1|(n,x) of A132393 (unsigned Stirling1).
This is the third triangle of an a-family of Sheffer arrays, call them |S1|(a), with e.g.f. of the row polynomials |S1|(a;x;z) = ((1-z)^a)*exp(-x*log(1-z)). In the notation showing the column e.g.f.s this is Sheffer ((1-z)^a,-log(1-z)). In the umbral notation (see the Roman reference, given under A094645) this is called Sheffer for (exp(a*t),1-exp(-t)). For a=0 this becomes the unsigned Stirling1 triangle |S1|(0) = A132393 with row polynomials |S1|(0;n,x) =: s1(n,x).
E.g.f. column number k (with leading zeros): ((1-x)^a)*((-log(1-x))^k)/k!, k >= 0.
E.g.f. for row sums is (1-x)^(a-1), and the e.g.f. for the alternating row sums is (1-x)^(a+1).
Row polynomial recurrence:
|S1|(a;n,x)=(x+(n-1-a))*|S1|(a;n-1,m), |S1|(a;0,x)=1.
Meixner identity (see the reference under A060338):
|S1|(a;n,x) - |S1|(a;n,x-1) = n*|S1|(a;n-1,x), n >= 1,
Also (from the corollary 3.7.2 on p. 50 of the Roman reference): |S1|(a;n,x) = (x-a)*|S1|(a;n-1,x+1), n >= 1.
Recurrence: |S1|(a;n,k) = |S1|(a;n-1,k-1) + (n-(a+1))*|S1|(a;n-1,k); |S1|(a;n,k)=0 if n < m, |S1|(a;n,-1)=0, |S1|(a;0,0)=1.
Connection to |Stirling1|=|S1|(0):
|S1|(a;n,k) = Sum_{p=0..a} |S1|(a;a,p)*abs(Stirling1(n-a,k-p)), n >= a.
The exponential convolution identity is
|S1|(a;n,x+y) = Sum_{k=0..n} binomial(n,k)*|S1|(a;k,y)*s1(n-k,x), n >= 0, with symmetry x <-> y.
The Sheffer a- and z-sequences are (see the W. Lang link under A006232): Sha(a;n)=A164555(n)/A027642(n) (independent of a) with e.g.f. x/(1-exp(-x)), and the z-sequence has e.g.f. (exp(a*x)-1)/(exp(-x)-1).
The inverse Sheffer matrix has e.g.f. exp(a*z)*exp(x*(1-exp(-z))), in short notation (exp(a*z),1-exp(-z)),
(or in umbral notation ((1-t)^a,-log(1-t))).
(End)

Examples

			Triangle begins
   1;
  -2,  1;
   2, -3,  1;
   0,  2, -3,  1;
   0,  2, -1, -2,  1;
   0,  4,  0, -5,  0,  1;
   ...
risefac(x-2,3) = (x-2)*(x-1)*x = 2*x-3*x^2+x^3.
-1 = T(4,2) = T(3,1) + 1*T(3,2) =  2 + (-3).
T(4,3) = 2*abs(S1(2,3)) - 3*abs(S1(2,2)) + 1*abs(S1(2,1)) = 2*0 - 3*1 + 1*1 = -2.
		

Crossrefs

Programs

  • Maple
    A094646_row := n -> seq((-1)^(n-k)*coeff(expand(pochhammer(x-n+3, n)), x, k), k=0..n): seq(print(A094646_row(n)), n = 0..6); # Peter Luschny, May 16 2013
  • Mathematica
    Flatten[ Table[ CoefficientList[ Pochhammer[x-2, n], x], {n, 0, 10}]] (* Jean-François Alcover, Sep 26 2011 *)

Formula

E.g.f.: (1-y)^(2-x).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000142(n+1), A001710(n+2), A001715(n+3), A001720(n+4), A001725(n+5), A001730(n+6), A049388(n), A049389(n), A049398(n), A051431(n) for x = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 respectively. - Philippe Deléham, Nov 13 2007
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then |T(n,i)| = |f(n,i,-2)|, for n=1,2,...; i=0..n. - Milan Janjic, Dec 21 2008
From Wolfdieter Lang, Jun 23 2011: (Start)
risefac(x-2,n) = Sum_{k=0..n} T(n,k)*x^k, n >= 0, with the rising factorials (see a comment above).
Recurrence: T(n,k) = T(n-1,k-1) + (n-3)*T(n-1,k); T(n,k)=0 if n < m, T(n,-1)=0, T(0,0)=1.
T(n,k) = 2*abs(S1(n-2,k)) - 3*abs(S1(n-2,k-1)) + abs(S1(n-2,k-2)), n >= 2, with S1(n,k) = Stirling1(n,k) = A048994(n,k).
E.g.f. column number k (with leading zeros):
((1-x)^2)*((-log(1-x))^k)/k!, k >= 0.
E.g.f. for row sums is 1-x, i.e., [1,-1,0,0,...],
and the e.g.f. for the alternating row sums is (1-x)^3. i.e., [1,-3,3,1,0,0,...]. (End)

A136124 Triangle read by rows: T(n,k) = (-1)^(n+k)*Sum_{j=1..k} s(n,j), where s(n,j) are the signed Stirling numbers of the first kind (n >= 2; 1 <= k <= n-1; s(n,j) = A008275(n,j)).

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 24, 26, 9, 1, 120, 154, 71, 14, 1, 720, 1044, 580, 155, 20, 1, 5040, 8028, 5104, 1665, 295, 27, 1, 40320, 69264, 48860, 18424, 4025, 511, 35, 1, 362880, 663696, 509004, 214676, 54649, 8624, 826, 44, 1, 3628800, 6999840, 5753736, 2655764
Offset: 2

Views

Author

Emeric Deutsch, Dec 23 2007

Keywords

Comments

Sum of entries in row n = n!/2 = A001710(n). T(n,1) = (n-1)! = A000142(n-1). Columns 2,3,4 and 5 yield A001705,A001706,A001707 and A001708, respectively.
See A143491 for the interpretation of these numbers as restricted Stirling numbers of the first kind. See A049444 for a signed version of this array. - Peter Bala, Aug 25 2008
With offset n=0, k=0: triangle T(n,k), read by rows, given by [2,1,3,2,4,3,5,4,6,5,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 29 2011
With offset n=0, k=0: T(n,k) is the number of ways to seat n people at any number of round tables and serve exactly k of the tables water, some number of the remaining tables red wine, and the rest of the tables white wine. - Geoffrey Critzer, Mar 13 2015

Examples

			T(6,3)=71 because (-1)^9*[s(6,1)+s(6,2)+s(6,3)]=-(-120+274-225)=71.
Triangle starts:
    1;
    2,   1;
    6,   5,   1;
   24,  26,   9,   1;
  120, 154,  71,  14,   1;
		

Crossrefs

Programs

  • Maple
    A136124_row := proc(n) local k,j; `if`(n=0,1,seq((-1)^(n+1-k)*add(stirling1(n+1,j), j=1..k),k=1..n)) end: seq(print(A136124_row(r)),r=1..6); # Peter Luschny, Sep 29 2011
    with(combinat): T:=proc(n, k) options operator, arrow: (-1)^(n+k)*(sum(stirling1(n,j),j=1..k)) end proc: for n from 2 to 11 do seq(T(n,k),k=1..n-1) end do; # yields sequence in triangular form
  • Mathematica
    nn = 10; Map[Select[#, # > 0 &] &,Range[0,nn]!CoefficientList[Series[Exp[(2 + y) Log[1/(1 - x)]], {x, 0, nn}], {x,y}]] // Flatten (* Geoffrey Critzer, Mar 13 2015 *)

Formula

E.g.f.: Sum[(1/n!)T(n,k)x^n*t^k, k=1..n-1, n>=2]=1/[(1+t)(1-x)^t]-(1+tx)/(1+t). Generating polynomial of row n = t*Product(j+t, j=2..n-1). T(n,k) is the sum of all products of n-k-1 different integers taken from {2,3,...,n-1}. For example, T(6,3) = 2*3 + 2*4 + 2*5 + 3*4 + 3*5 + 4*5 = 71.

A087745 Numbers A001317 repeated.

Original entry on oeis.org

1, 1, 3, 3, 5, 5, 15, 15, 17, 17, 51, 51, 85, 85, 255, 255, 257, 257, 771, 771, 1285, 1285, 3855, 3855, 4369, 4369, 13107, 13107, 21845, 21845, 65535, 65535, 65537, 65537, 196611, 196611, 327685, 327685, 983055, 983055, 1114129, 1114129
Offset: 0

Views

Author

Philippe Deléham, Oct 02 2003

Keywords

Comments

Triangles A049444, A049459, A051338, A051379, A051523 (Mitrinovic's triangles) mod 2 converted to decimal.
Sequence [1, 3, 5, 15, 17, 51, 85, 255, 257, ...] = A001317.

Crossrefs

Programs

  • Python
    def A087745(n): return sum((bool(~(m:=n>>1)&m-k)^1)<>1)+1)) # Chai Wah Wu, May 02 2023

Extensions

Definition corrected and edited by Omar E. Pol, Dec 24 2008

A109822 Triangle read by rows: T(n,1)=1, T(n,k) = T(n-1,k) + (n-1)T(n-1, k-1) for 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 7, 18, 24, 1, 11, 46, 96, 120, 1, 16, 101, 326, 600, 720, 1, 22, 197, 932, 2556, 4320, 5040, 1, 29, 351, 2311, 9080, 22212, 35280, 40320, 1, 37, 583, 5119, 27568, 94852, 212976, 322560, 362880, 1, 46, 916, 10366, 73639, 342964, 1066644
Offset: 1

Views

Author

Emeric Deutsch, Jul 03 2005

Keywords

Comments

T(n,n) = n!. Sum of row n is the signless Stirling number of the first kind s(n,2)(A000254). T(n,k) = A096747(n,k) for 1 <= k <= n.

Examples

			T(5,3) = 46 because 18 + 4*7 = 46.
Triangle begins:
Row 1:                    1
Row 2:                 1     2
Row 3:              1     4     6
Row 4:           1     7    18    24
Row 5:        1    11    46    96   120
Row 6:     1    16   101   326   600   720
Row 7:  1    22   197   932  2556  4320  5040
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=(n,k)->add(abs(stirling1(n,n-i)),i=0..k-1): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form T:=proc(n,k) if k=1 then 1 elif k=n then n! else T(n-1,k)+(n-1)*T(n-1,k-1) fi end: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form. - Emeric Deutsch, Jul 03 2005
    A109822_row := proc(n) local k,i;
    add(add(abs(combinat[stirling1](n, n-i)), i=0..k)*x^(n-k-1),k=0..n-1);
    seq(coeff(%,x,n-k),k=1..n) end:
    seq(print(A109822_row(n)),n=1..7); # Peter Luschny, Sep 18 2011
  • Mathematica
    Table[Sum[Abs@ StirlingS1[n, n - i], {i, 0, k - 1}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Aug 17 2017 *)

Formula

T(n, k) = Sum_{i=0..k-1} |stirling1(n, n-i)| for 1 <= k <= n.
From Peter Bala, Jul 08 2012: (Start)
E.g.f.: x/(1-x)*{1/(1-x*z)^(1/x) - 1/(1-x*z)} = x*z + (x + 2*x^2)*z^2/2! + (x + 4*x^2 + 6*x^3)*z^3/3! + ... Cf. the e.g.f. of A059518.
(End)

A269952 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*S2(j,k), S2 the Stirling set numbers A048993, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 5, 1, 0, 8, 19, 9, 1, 0, 16, 65, 55, 14, 1, 0, 32, 211, 285, 125, 20, 1, 0, 64, 665, 1351, 910, 245, 27, 1, 0, 128, 2059, 6069, 5901, 2380, 434, 35, 1, 0, 256, 6305, 26335, 35574, 20181, 5418, 714, 44, 1
Offset: 0

Views

Author

Peter Luschny, Apr 10 2016

Keywords

Examples

			1,
0, 1,
0, 2, 1,
0, 4, 5, 1,
0, 8, 19, 9, 1,
0, 16, 65, 55, 14, 1,
0, 32, 211, 285, 125, 20, 1,
0, 64, 665, 1351, 910, 245, 27, 1.
		

Crossrefs

Variant: A143494 (the main entry for this triangle).
A005493 (row sums), A074051 (alt. row sums), A000079 (col. 1), A001047 (col. 2),
A016269 (col. 3), A025211 (col. 4), A000096 (diag. n,n-1), A215862 (diag. n,n-2),
A049444, A136124, A143491 (matrix inverse).

Programs

  • Maple
    A269952 := (n,k) -> Stirling2(n+1, k+1) - Stirling2(n, k+1):
    seq(seq(A269952(n,k), k=0..n), n=0..9);
  • Mathematica
    Flatten[ Table[ Sum[(-1)^(n-j) Binomial[-j,-n] StirlingS2[j,k], {j,0,n}], {n,0,9}, {k,0,n}]]

Formula

T(n, k) = S2(n+1, k+1) - S2(n, k+1).

A360657 Number triangle T associated with 2-Stirling numbers and Lehmer-Comtet numbers (see Comments and Formula section).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 9, 5, 1, 0, 64, 37, 9, 1, 0, 625, 369, 97, 14, 1, 0, 7776, 4651, 1275, 205, 20, 1, 0, 117649, 70993, 19981, 3410, 380, 27, 1, 0, 2097152, 1273609, 365001, 64701, 7770, 644, 35, 1, 0, 43046721, 26269505, 7628545, 1388310, 174951, 15834, 1022, 44, 1
Offset: 0

Views

Author

Werner Schulte, Feb 15 2023

Keywords

Comments

Triangle T is created using 2-Stirling numbers of the first (A049444) and the second (A143494) kind. The unusual construction is as follows:
Define A(n, k) by recurrence A(n, k) = A(n-1, k-1) + (k+1) * A(n-1, k) for 0 < k < n with initial values A(n, n) = 1, n >= 0, and A(n, 0) = 0, n > 0. A without column k = 0 is A143494. Let B = A^(-1) matrix inverse of A. B without column k = 0 is A049444. Now define T(m, k) = Sum_{i=0..m-k} B(m-k, i) * A(m-1+i, m-1) for 0 < k <= m = n/2 and T(m, 0) = 0^m for 0 <= m = n/2; T(i, j) = 0 if i < j or j < 0.
Matrix inverse of T is A360753. - Werner Schulte, Feb 21 2023
Conjecture: the transpose of this array is the upper triangular matrix U in the LU factorization of the array of Stirling numbers of the second kind read as a square array; the corresponding lower triangular array L is the triangle of Stirling numbers of the second kind. See the example section below. - Peter Bala, Oct 10 2023

Examples

			Triangle T(n, k), 0 <= k <= n, starts:
n\k :  0         1         2        3        4       5      6     7   8  9
==========================================================================
  0 :  1
  1 :  0         1
  2 :  0         2         1
  3 :  0         9         5        1
  4 :  0        64        37        9        1
  5 :  0       625       369       97       14       1
  6 :  0      7776      4651     1275      205      20      1
  7 :  0    117649     70993    19981     3410     380     27     1
  8 :  0   2097152   1273609   365001    64701    7770    644    35   1
  9 :  0  43046721  26269505  7628545  1388310  174951  15834  1022  44  1
  etc.
From _Peter Bala_, Oct 10 2023: (Start)
LU factorization of the square array of Stirling numbers of the second kind (apply Xu, Lemma 2.2):
 / 1               \ / 1   1   1   1  ...\    / 1   1   1    1  ... \
 | 1   1           ||      2   5   9  ...|   |  1   3   6   10  ... |
 | 1   3   1       ||          9  37  ...| = |  1   7  25   65  ... |
 | 1   7   6   1   ||             64  ...|   |  1  15  90  350  ... |
 | ...             ||                 ...|   |  ...                 |
(End)
		

Crossrefs

Cf. A000007 (column 0), A000169 (column 1), A055869 (column 2).
Cf. A000012 (main diagonal), A000096 (1st subdiagonal), A360753 (matrix inverse).

Programs

  • PARI
    tabl(m) = {my(n=2*m, A = matid(n), B, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); T = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); }

Formula

For the definition of triangle T see Comments section.
Conjectured formulas:
1. T(n, k) = (Sum_{i=k..n} A354794(n, i) * (i-1)!) / (k-1)! for 0 < k <= n.
2. T(n, k) - k * T(n, k+1) = A354794(n, k) for 0 <= k <= n.
3. T(n, 1) = A000169(n) = n^(n-1) for n > 0.
4. T(n, 2) = A055869(n-1) = n^(n-1) - (n-1)^(n-1) for n > 1.
5. T(n, k) = (Sum_{i=0..k-1} (-1)^i * binomial(k-1, i) * (n-i)^(n-1)) / (k-1)! for 0 < k <= n.
6. Sum_{i=1..n} (-1)^(n-i) * binomial(n-1+k, i-1) * T(n, i) * (i-1)! = (k-1)^(n-1) for n > 0 and k >= 0.
7. Matrix product of A354795 and T without column 0 equals A094587.
8. Matrix product of T and A354795 without column 0 equals A088956.
9. E.g.f. of column k > 0: Sum_{n>=k} T(n, k) * t^(n-1) / (n-1)! = (W(-t)/(-t)) * (Sum_{n>=k} A354794(n, k) * t^(n-1) / (n-1)!) where W is the Lambert_W-function.
Previous Showing 11-16 of 16 results.