cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A306242 Number of ways to write n as x*(3x+1) + y*(3y-1) + z*(3z+2) + w*(3w-2), where x,y,z,w are nonnegative integers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 3, 2, 2, 1, 3, 4, 3, 3, 2, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 7, 4, 5, 4, 3, 4, 4, 6, 6, 3, 9, 6, 2, 5, 5, 8, 4, 6, 7, 6, 5, 6, 3, 5, 9, 6, 8, 7, 8, 7, 7, 8, 7, 4, 9, 8, 6, 6, 7, 7, 13, 9, 6, 6, 7, 11, 4, 6, 11, 9, 12
Offset: 0

Views

Author

Zhi-Wei Sun, Jan 31 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 1, 2, 3, 4, 9, 13. Moreover, any nonnegative integer n can be written as x*(3x+1) + y*(3y-1) + z*(3z+2) + w*(3w-2), where x,y,z,w are nonnegative integers with x or y even.
The conjecture has been verified for n up to 10^6.
By Theorem 1.3 of the linked 2017 paper of the author, each nonnegative integer can be written as x*(3x+1) + y*(3y-1) + z*(3z+2) + 0*(3*0-2) with x,y,z integers.
We also have some other similar conjectures. For example, we conjecture that every n = 0,1,2,... can be written as x*(5x+1)/2 + y*(5y-1)/2 + z*(5z+3)/2 + w*(5w-3)/2 with x,y,z,w nonnegative integers.

Examples

			a(1) = 1 with 1 = 0*(3*0+1) + 0*(3*0-1) + 0*(3*0+2) + 1*(3*1-2).
a(3) = 1 with 3 = 0*(3*0+1) + 1*(3*1-1) + 0*(3*0+2) + 1*(3*1-2).
a(4) = 1 with 4 = 1*(3*1+1) + 0*(3*0-1) + 0*(3*0+2) + 0*(3*0-2).
a(9) = 1 with 9 = 1*(3*1+1) + 0*(3*0-1) + 1*(3*1+2) + 0*(3*0-2).
a(13) = 1 with 13 = 0*(3*0+1) + 0*(3*0-1) + 1*(3*1+2) + 2*(3*2-2).
		

Crossrefs

Programs

  • Mathematica
    OctQ[n_]:=OctQ[n]=IntegerQ[Sqrt[3n+1]]&&(n==0||Mod[Sqrt[3n+1]+1,3]==0);
    tab={};Do[r=0;Do[If[OctQ[n-x(3x+2)-y(3y+1)-z(3z-1)],r=r+1],{x,0,(Sqrt[3n+1]-1)/3},{y,0,(Sqrt[12(n-x(3x+2))+1]-1)/6},{z,0,(Sqrt[12(n-x(3x+2)-y(3y+1))+1]+1)/6}];tab=Append[tab,r],{n,0,80}];Print[tab]

A142962 Scaled convolution of (n^3)*A000984(n) with A000984(n).

Original entry on oeis.org

4, 26, 81, 184, 350, 594, 931, 1376, 1944, 2650, 3509, 4536, 5746, 7154, 8775, 10624, 12716, 15066, 17689, 20600, 23814, 27346, 31211, 35424, 40000, 44954, 50301, 56056, 62234, 68850, 75919, 83456, 91476, 99994, 109025, 118584, 128686, 139346, 150579
Offset: 1

Views

Author

Wolfdieter Lang, Sep 15 2008

Keywords

Comments

S(3,n) := Sum_{j=0..n} j^3*binomial(2*j,j)*binomial(2*(n-j),n-j).
a(n) = 2^3*S(3,n)/4^n, n >= 1.
O.g.f. for S(3,n) is G(k=3,x). See triangle A142963 for the general G(k,x) formula.
The author was led to compute such sums by a question asked by M. Greiter, Jun 27 2008.

Crossrefs

Cf. A142961 triangle: row k=3: [3, 5], with the row polynomial 3+5*n.
Cf. A049451 (scaled k=2 case).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (4 + 10 x + x^2)/(1 - x)^4, {x, 0, 39}], x] (* Michael De Vlieger, Jul 02 2023 *)

Formula

a(n) = n^2*(3+5*n)/2.
a(n) = (2^3)*S(3,n)/4^n with the convolution S(3,n) defined above.
G.f.: x*(4+10*x+x^2)/(1-x)^4. - Joerg Arndt, Jul 02 2023

A300954 Number of Dyck paths whose sequence of ascent lengths is exactly n+1, n+2, ..., 2n.

Original entry on oeis.org

1, 1, 3, 26, 425, 10647, 365512, 16067454, 864721566, 55202528425, 4083666929771, 343854336973368, 32493430569907125, 3406873823160467912, 392619681705581846700, 49342834390595374213214, 6717520607597479710109299, 984991858956314599670220717, 154785386247352261724279606367
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2018

Keywords

Comments

Dyck paths counted by a(n) have semilength (3*n^2 + n)/2 = A005449(n) and length A049451(n).

Examples

			a(0) = 1: the empty path.
a(1) = 1: uudd.
a(2) = 3: uuuduuuudddddd, uuudduuuuddddd, uuuddduuuudddd.
		

Crossrefs

Main diagonal of A107876.

Programs

  • Maple
    a:= proc(m) option remember; local b; b:=
          proc(n, i) option remember; `if`(i>=2*m, 1,
            add(b(n+i-j, i+1), j=1..n+i))
          end; b(0, m+1)
        end:
    seq(a(n), n=0..20);
  • Mathematica
    a[m_] := a[m] = Module[{b}, b[n_, i_] := b[n, i] = If[i >= 2m, 1, Sum[b[n + i - j, i + 1], {j, 1, n + i}]]; b[0, m + 1]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 02 2018, from Maple *)

Formula

a(n) = A107876(2n,n).

A306250 Number of ways to write n as x*(3x+1) + y*(3y-1) + z*(3z+2) + w*(3w-2), where x,y,z,w are nonnegative integers with x*y*z = 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 3, 1, 1, 1, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 4, 3, 3, 3, 3, 2, 4, 3, 3, 2, 2, 4, 4, 4, 4, 2, 5, 4, 1, 3, 3, 5, 3, 4, 4, 4, 3, 3, 2, 2, 6, 4, 6, 4, 6, 4, 4, 4, 3, 2, 5, 4, 4, 3, 5, 4, 7, 4, 2, 2, 4, 8, 3, 4, 6, 4, 5, 6, 3, 5, 5, 6, 6, 5, 4, 5, 3, 4, 2, 4, 5, 6, 6, 7, 6, 1, 8
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 01 2019

Keywords

Comments

Conjecture: a(n) > 0 for any nonnegative integer n.
Clearly, a(n) <= A306242(n). We have verified a(n) > 0 for all n = 0..10^6.

Examples

			a(12) = 1 with 12 = 1*(3*1+1) + 0*(3*0-1) + 0*(3*0+2) + 2*(3*2-2).
a(42) = 1 with 42 = 0*(3*0+1) + 1*(3*1-1) + 0*(3*0+2) + 4*(3*4-2).
a(62) = 3 with 62 = 3*(3*3+1) + 3*(3*3-1) + 0*(3*0+2) + 2*(3*2-2)
= 4*(3*4+1) + 2*(3*2-1) + 0*(3*0+2) + 0*(3*0-2) = 4*(3*4+1) + 1*(3*1-1) + 0*(3*0+2) + 2*(3*2-2).
a(99) = 1 with 99 = 2*(3*2+1) + 0*(3*0-1) + 5*(3*5+2) + 0*(3*0-2).
a(118) = 1 with 118 = 0*(3*0+1) + 6*(3*6-1) + 2*(3*2+2) + 0*(3*0-2).
		

Crossrefs

Programs

  • Mathematica
    OctQ[n_]:=OctQ[n]=IntegerQ[Sqrt[3n+1]]&&(n==0||Mod[Sqrt[3n+1]+1,3]==0);
    tab={};Do[r=0;Do[If[OctQ[n-x(3x+2)-y(3y+1)-z(3z-1)],r=r+1],{x,0,(Sqrt[3n+1]-1)/3},{y,0,(Sqrt[12(n-x(3x+2))+1]-1)/6},{z,0,If[x>0&&y>0,0,(Sqrt[12(n-x(3x+2)-y(3y+1))+1]+1)/6]}];tab=Append[tab,r],{n,0,100}];Print[tab]

A027903 a(n) = n*(n + 1)*(3*n + 1).

Original entry on oeis.org

0, 8, 42, 120, 260, 480, 798, 1232, 1800, 2520, 3410, 4488, 5772, 7280, 9030, 11040, 13328, 15912, 18810, 22040, 25620, 29568, 33902, 38640, 43800, 49400, 55458, 61992, 69020, 76560, 84630, 93248, 102432, 112200, 122570, 133560, 145188, 157472, 170430
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, Dec 02 2013: (Start)
a(n) = n*(n + 1)*(3*n + 1).
a(n) = 3*n^3 + 4*n^2 + n.
a(n) = A002378(n) * A016777(n).
a(n) = A049451(n) * A001477(n+1).
a(n) = A001477(n) * A000567(n-1).
a(n) = A001477(n) * A001477(n+1) * A016777(n).
a(n) = A117642(n) + A016742(n) + A001477(n). (End)
From Amiram Eldar, Aug 15 2025: (Start)
Sum_{n>=1} 1/a(n) = 4 - sqrt(3)*Pi/4 - 9*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/2 + 2*log(2) - 4. (End)
From Elmo R. Oliveira, Aug 29 2025: (Start)
G.f.: 2*x*(4 + 5*x)/(1 - x)^4.
E.g.f.: x*(8 + 13*x + 3*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A157481 Number of primes between n^3-n^2 and (n+1)^3-(n+1)^2.

Original entry on oeis.org

0, 2, 5, 8, 10, 16, 21, 24, 32, 36, 43, 53, 57, 65, 74, 86, 92, 104, 114, 123, 133, 150, 151, 175, 180, 194, 207, 224, 238, 251, 271, 275, 306, 305, 332, 349, 359, 383, 408, 410, 434, 458, 473, 497, 502, 549, 553, 570, 590, 630, 641, 668, 685, 718, 726, 748, 780
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[(n+1)^3-(n+1)^2]-PrimePi[n^3-n^2],{n,0,5!}]

A165410 Hankel transform of the transform of 2^n given by A165409.

Original entry on oeis.org

1, 0, -4, -16, 0, 1024, 16384, 0, -16777216, -1073741824, 0, 17592186044416, 4503599627370496, 0, -1180591620717411303424, -1208925819614629174706176, 0, 5070602400912917605986812821504, 20769187434139310514121985316880384
Offset: 0

Views

Author

Paul Barry, Sep 17 2009

Keywords

Comments

Powers of two occurring in this sequence are based on the hexagonal spiral pattern of A049450 and A049451 (see A152749):
.
16--15--14
/ \
17 5---4 13
/ / \ \
18 6 0 3 12
/ / / / /
19 7 1---2 11 26
\ \ / /
20 8---9--10 25
\ /
21--22--23--24
.
The powers, (0,-oo,2,4,-oo,10,14,-oo,24,30,-oo,...) correspond to vertically joining pairs on the (0,4) and (0,2) radial lines, with -oo corresponding to the jump to the next pair.
The Hankel transforms of transforms of r^n behave similarly -- we get 1, 0, -r^2, -r^4, 0, r^10, r^14, ....
Note the Somos-4 property: a(3n) = 4*a(3n-1)*a(3n-3)/e(3n-4). Related to elliptic curve y^2 = 1 - 8x^3 in g.f. of A165409.

Crossrefs

Cf. A165409.

A157482 Number of primes between n^3-n^2-n^1 and (n+1)^3-(n+1)^2-(n+1)^1.

Original entry on oeis.org

0, 1, 5, 8, 10, 16, 21, 24, 30, 39, 42, 52, 57, 65, 75, 86, 92, 102, 115, 122, 133, 150, 151, 176, 181, 192, 209, 221, 239, 252, 270, 273, 307, 308, 328, 350, 359, 383, 407, 414, 430, 460, 472, 494, 504, 548, 554, 571, 590, 629, 642, 669, 681, 722, 724, 749, 776
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[(n+1)^3-(n+1)^2-(n+1)^1]-PrimePi[n^3-n^2-n^1],{n,0,5!}]

A257144 Numbers n not of the form x+y*x^2 for x>1 and y>0.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 37, 40, 41, 43, 44, 45, 47, 49, 51, 53, 59, 60, 61, 63, 64, 65, 67, 69, 71, 73, 76, 77, 79, 81, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 99, 101, 103, 104, 107, 108, 109, 112, 113, 115, 117, 119, 121
Offset: 1

Views

Author

Gionata Neri, Apr 16 2015

Keywords

Comments

Number n such that (d*k+1) /= (n/d), for k>0 and each value of d, where d is a divisor >1 of n.

Crossrefs

For numbers of the form x+y*x^2 with 0A002378 (y=1), A014105 (y=2), A049451 (y=3), A007742 (y=4), A202803 (y=5), A049453 (y=6), A092277 (y=7), A139275 (y=8), A154517 (y=9), A055437 (y=10). - Danny Rorabaugh, Apr 20 2015

Programs

  • Mathematica
    n = 71; Take[Complement[Range[n^2], DeleteDuplicates@ Sort@ Flatten@ Table[x + y x^2, {x, 2, n}, {y, 1, n}]], n] (* Michael De Vlieger, Apr 17 2015 *)

A295089 a(n) = 3*n^2 + n + 3.

Original entry on oeis.org

3, 7, 17, 33, 55, 83, 117, 157, 203, 255, 313, 377, 447, 523, 605, 693, 787, 887, 993, 1105, 1223, 1347, 1477, 1613, 1755, 1903, 2057, 2217, 2383, 2555, 2733, 2917, 3107, 3303, 3505, 3713, 3927, 4147, 4373, 4605, 4843, 5087, 5337, 5593, 5855, 6123, 6397, 6677, 6963, 7255, 7553, 7857
Offset: 0

Views

Author

Ron Knott, Nov 14 2017

Keywords

Comments

Numbers represented as the palindrome 313 in number base n including base n=1, base 2 (binary) and base 3 with 'illegal' digit 3: 313_1=7, 313_2=17, 313_3=33, ... 313_9=255, 313_10=313, ...

Examples

			313 in base 7 is 3*7^2 + 1*7 + 3 = 157.
		

Crossrefs

Programs

  • Mathematica
    Array[3 #^2 + # + 3 &, 52, 0] (* Michael De Vlieger, Nov 15 2017 *)
    LinearRecurrence[{3, -3, 1}, {3, 7, 17}, 52] (* or *)
    CoefficientList[Series[-(5 x^2 - 2 x + 3)/(x - 1)^3, {x, 0, 51}], x] (* Robert G. Wilson v, Nov 29 2017 *)
  • PARI
    a(n) = 3*n^2 + n + 3; \\ Michel Marcus, Dec 15 2017

Formula

a(n) = A131649(n+3) + 1, n >= 2 (conjectured).
a(n) = A056108(n) + 2 = A049451(n) + 3 = A144391(n) + 4.
From Elmo R. Oliveira, Sep 02 2025: (Start)
G.f.: (3 - 2*x + 5*x^2)/(1-x)^3.
E.g.f.: (3 + 4*x + 3*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
Previous Showing 21-30 of 31 results. Next