cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A231608 Table whose n-th row consists of primes p such that p + 2n is also prime, read by antidiagonals.

Original entry on oeis.org

3, 3, 5, 5, 7, 11, 3, 7, 13, 17, 3, 5, 11, 19, 29, 5, 7, 11, 13, 37, 41, 3, 7, 13, 23, 17, 43, 59, 3, 5, 11, 19, 29, 23, 67, 71, 5, 7, 17, 17, 31, 53, 31, 79, 101, 3, 11, 13, 23, 19, 37, 59, 37, 97, 107, 7, 11, 13, 31, 29, 29, 43, 71, 41, 103, 137
Offset: 1

Views

Author

T. D. Noe, Nov 26 2013

Keywords

Examples

			The following sequences are read by antidiagonals
{3, 5, 11, 17, 29, 41, 59, 71, 101, 107,...}
{3, 7, 13, 19, 37, 43, 67, 79, 97, 103,...}
{5, 7, 11, 13, 17, 23, 31, 37, 41, 47,...}
{3, 5, 11, 23, 29, 53, 59, 71, 89, 101,...}
{3, 7, 13, 19, 31, 37, 43, 61, 73, 79,...}
{5, 7, 11, 17, 19, 29, 31, 41, 47, 59,...}
{3, 5, 17, 23, 29, 47, 53, 59, 83, 89,...}
{3, 7, 13, 31, 37, 43, 67, 73, 97, 151,...}
{5, 11, 13, 19, 23, 29, 41, 43, 53, 61,...}
{3, 11, 17, 23, 41, 47, 53, 59, 83, 89,...}
...
		

Crossrefs

Cf. A020483 (numbers in first column).
Cf. A086505 (numbers on the diagonal).

Programs

  • Maple
    A231608 := proc(n,k)
        local j,p ;
        j := 0 ;
        p := 2;
        while j < k do
            if isprime(p+2*n ) then
                j := j+1 ;
            end if;
            if j = k then
                return p;
            end if;
            p := nextprime(p) ;
        end do:
    end proc:
    for n from 1 to 10 do
        for k from 1 to 10 do
            printf("%3d ",A231608(n,k)) ;
        end do;
        printf("\n") ;
    end do: # R. J. Mathar, Nov 19 2014
  • Mathematica
    nn = 10; t = Table[Select[Range[100*nn], PrimeQ[#] && PrimeQ[# + 2*n] &, nn], {n, nn}]; Table[t[[n-j+1, j]], {n, nn}, {j, n}]

A361483 Primes p such that p + 256 is also prime.

Original entry on oeis.org

7, 13, 37, 61, 97, 103, 127, 163, 193, 211, 223, 307, 313, 331, 337, 397, 421, 463, 487, 541, 571, 601, 607, 631, 673, 691, 727, 757, 853, 907, 937, 967, 1021, 1033, 1051, 1063, 1117, 1153, 1171, 1231, 1237, 1297, 1303, 1327, 1381, 1453, 1531, 1567, 1621, 1657, 1693, 1723
Offset: 1

Views

Author

Elmo R. Oliveira, Mar 13 2023

Keywords

Comments

All terms are == 1 (mod 6).

Examples

			61 and 61 + 256 = 317 are both prime.
		

Crossrefs

Cf. A000040.
Cf. sequences of the type p + k are primes: A001359 (k = 2), A023200 (k = 4), A023202 (k = 8), A049488 (k = 16), A049489 (k = 32), A049490 (k = 64), A049491 (k = 128), this sequence (k = 256), A361484 (k = 512), A361485 (k = 1024).

A272815 Prime pairs of the form (p, p+16).

Original entry on oeis.org

3, 19, 7, 23, 13, 29, 31, 47, 37, 53, 43, 59, 67, 83, 73, 89, 97, 113, 151, 167, 157, 173, 163, 179, 181, 197, 211, 227, 223, 239, 241, 257, 277, 293, 331, 347, 337, 353, 367, 383, 373, 389, 433, 449, 463, 479, 487, 503, 541, 557, 547, 563, 571
Offset: 1

Views

Author

Vincenzo Librandi, May 07 2016

Keywords

Comments

p and p+16 are not necessarily consecutive primes: (1831, 1847) is the first pair of consecutive primes that belongs to the sequence.

Examples

			The prime pairs are (3, 19), (7, 23), (13, 29) etc.
		

Crossrefs

Cf. prime pairs of the form (p, p+k): A077800 (k=2), A094343 (k=4), A156274 (k=6), A156320 (k=8), A140445 (k=10), A156323 (k=12), A140446 (k=14), this sequence (k=16), A156328 (k=18), A272816 (k=20), A140447 (k=22).

Programs

  • Magma
    &cat [[p,p+16]: p in PrimesUpTo(1000) | IsPrime(p+16)];
  • Mathematica
    Flatten[{#, # + 16}&/@Select[Prime[Range[200]], PrimeQ[# + 16] &]]

Formula

a(2n+1) = A049488(n+1).

A361484 Primes p such that p + 512 is also prime.

Original entry on oeis.org

11, 29, 59, 89, 101, 107, 131, 149, 179, 197, 227, 239, 257, 311, 317, 347, 479, 509, 521, 557, 617, 641, 659, 701, 719, 809, 887, 911, 941, 947, 971, 977, 1019, 1031, 1097, 1109, 1151, 1181, 1187, 1229, 1277, 1289, 1319, 1361, 1367, 1439, 1481, 1487, 1499, 1571, 1601
Offset: 1

Views

Author

Elmo R. Oliveira, Mar 13 2023

Keywords

Comments

All terms are == 5 (mod 6).

Examples

			59 and 59 + 512 = 571 are both prime.
		

Crossrefs

Cf. A000040.
Cf. sequences of the type p + k are primes: A001359 (k = 2), A023200 (k = 4), A023202 (k = 8), A049488 (k = 16), A049489 (k = 32), A049490 (k = 64), A049491 (k = 128), A361483 (k = 256), this sequence (k = 512), A361485 (k = 1024).

A361679 A(n,k) is the n-th prime p such that p + 2^k is also prime; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

3, 3, 5, 3, 7, 11, 3, 5, 13, 17, 5, 7, 11, 19, 29, 3, 11, 13, 23, 37, 41, 3, 7, 29, 31, 29, 43, 59, 7, 11, 19, 41, 37, 53, 67, 71, 11, 13, 23, 37, 47, 43, 59, 79, 101, 7, 29, 37, 29, 43, 71, 67, 71, 97, 107, 5, 37, 59, 61, 53, 67, 107, 73, 89, 103, 137
Offset: 1

Views

Author

Alois P. Heinz, Mar 20 2023

Keywords

Examples

			Square array A(n,k) begins:
    3,   3,   3,   3,   5,   3,   3,   7,  11,   7, ...
    5,   7,   5,   7,  11,   7,  11,  13,  29,  37, ...
   11,  13,  11,  13,  29,  19,  23,  37,  59,  67, ...
   17,  19,  23,  31,  41,  37,  29,  61,  89,  73, ...
   29,  37,  29,  37,  47,  43,  53,  97, 101,  79, ...
   41,  43,  53,  43,  71,  67,  71, 103, 107, 127, ...
   59,  67,  59,  67, 107,  73,  83, 127, 131, 139, ...
   71,  79,  71,  73, 131, 103, 101, 163, 149, 157, ...
  101,  97,  89,  97, 149, 109, 113, 193, 179, 163, ...
  107, 103, 101, 151, 167, 127, 149, 211, 197, 193, ...
		

Crossrefs

Row n=1 gives A056206.
Main diagonal gives A361680.
Cf. A000040.

Programs

  • Maple
    A:= proc() option remember; local f; f:= proc() [] end;
          proc(n, k) option remember; local p;
            p:= `if`(nops(f(k))=0, 1, f(k)[-1]);
            while nops(f(k))
    				

A222227 Numbers n such that n and n + 16 are prime and there is a power of two in the interval (n,n+16).

Original entry on oeis.org

3, 7, 13, 31, 241, 65521, 1048573, 2305843009213693951
Offset: 1

Views

Author

Brad Clardy, Feb 23 2013

Keywords

Comments

It is a conjecture that this is a finite sequence. A search was conducted out to 2^1500.

Crossrefs

Programs

  • Magma
    //Program finds primes separated by an even number (called gap) which
    //have a power of two between them. Program starts with the smallest
    //power of two above gap. Primes less than this starting point can be
    //checked by inspection.
    gap:=16;
    start:=Ilog2(gap)+1;
    for i:= start to 1000 do
        powerof2:=2^i;
        for k:=powerof2-gap+1 to powerof2-1 by 2 do
            if (IsPrime(k) and IsPrime(k+gap)) then k;
            end if;
        end for;
    end for;

A106064 Primes p such that 1*p + 16 and 16*p + 1 are primes.

Original entry on oeis.org

7, 37, 97, 151, 163, 181, 331, 337, 487, 547, 571, 643, 727, 757, 967, 1033, 1087, 1093, 1303, 1423, 1471, 1567, 1831, 1987, 2083, 2113, 2221, 2251, 2281, 2671, 2683, 3121, 3187, 3607, 3847, 3931, 4111, 4201, 4447, 4663, 4993, 5023, 5791, 6073, 6343, 6553
Offset: 1

Views

Author

Zak Seidov, May 07 2005

Keywords

Crossrefs

Intersection of A049488 and A155943. - Michel Marcus, Jan 20 2018

Programs

  • Magma
    [p: p in PrimesUpTo(10000)| IsPrime(p+16) and IsPrime(16*p+1)]; // Vincenzo Librandi, Nov 13 2010
  • Mathematica
    Select[Prime[Range[220]], PrimeQ[16#+1]&&PrimeQ[1#+16]&]

A309392 Square array read by downward antidiagonals: A(n, k) is the k-th prime p such that p + 2*n is also prime, or 0 if that prime does not exist.

Original entry on oeis.org

3, 5, 3, 11, 7, 5, 17, 13, 7, 3, 29, 19, 11, 5, 3, 41, 37, 13, 11, 7, 5, 59, 43, 17, 23, 13, 7, 3, 71, 67, 23, 29, 19, 11, 5, 3, 101, 79, 31, 53, 31, 17, 17, 7, 5, 107, 97, 37, 59, 37, 19, 23, 13, 11, 3, 137, 103, 41, 71, 43, 29, 29, 31, 13, 11, 7, 149, 109
Offset: 1

Views

Author

Felix Fröhlich, Jul 28 2019

Keywords

Comments

The same as A231608 except that A231608 gives the upward antidiagonals of the array, while this sequence gives the downward antidiagonals.
Conjecture: All values are nonzero, i.e., for any even integer e there are infinitely many primes p such that p + e is also prime.
The conjecture is true if Polignac's conjecture is true.

Examples

			The array starts as follows:
3,  5, 11, 17, 29, 41, 59,  71, 101, 107, 137, 149, 179, 191
3,  7, 13, 19, 37, 43, 67,  79,  97, 103, 109, 127, 163, 193
5,  7, 11, 13, 17, 23, 31,  37,  41,  47,  53,  61,  67,  73
3,  5, 11, 23, 29, 53, 59,  71,  89, 101, 131, 149, 173, 191
3,  7, 13, 19, 31, 37, 43,  61,  73,  79,  97, 103, 127, 139
5,  7, 11, 17, 19, 29, 31,  41,  47,  59,  61,  67,  71,  89
3,  5, 17, 23, 29, 47, 53,  59,  83,  89, 113, 137, 149, 167
3,  7, 13, 31, 37, 43, 67,  73,  97, 151, 157, 163, 181, 211
5, 11, 13, 19, 23, 29, 41,  43,  53,  61,  71,  79,  83,  89
3, 11, 17, 23, 41, 47, 53,  59,  83,  89, 107, 131, 137, 173
7, 19, 31, 37, 61, 67, 79, 109, 127, 151, 157, 211, 229, 241
5,  7, 13, 17, 19, 23, 29,  37,  43,  47,  59,  73,  79,  83
		

Crossrefs

Cf. A231608.
Cf. A001359 (row 1), A023200 (row 2), A023201 (row 3), A023202 (row 4), A023203 (row 5), A046133 (row 6), A153417 (row 7), A049488 (row 8), A153418 (row 9), A153419 (row 10), A242476 (row 11), A033560 (row 12), A252089 (row 13), A252090 (row 14), A049481 (row 15), A049489 (row 16), A252091 (row 17), A156104 (row 18), A271347 (row 19), A271981 (row 20), A271982 (row 21), A272176 (row 22), A062284 (row 25), A049490 (row 32), A020483 (column 1).

Programs

  • PARI
    row(n, terms) = my(i=0); forprime(p=1, , if(i>=terms, break); if(ispseudoprime(p+2*n), print1(p, ", "); i++))
    array(rows, cols) = for(x=1, rows, row(x, cols); print(""))
    array(12, 14) \\ Print initial 12 rows and 14 columns of the array
Previous Showing 11-18 of 18 results.