cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A065728 Partition numbers (A000041) that are semiprimes (A001358).

Original entry on oeis.org

15, 22, 77, 1255, 2012558, 2679689, 9289091, 18004327, 38887673, 56634173, 72533807, 82010177, 104651419, 2056148051, 2552338241, 20390982757, 27517052599, 118159068427, 749474411781, 5134205287973, 18028182516671
Offset: 1

Views

Author

Patrick De Geest, Nov 18 2001

Keywords

Comments

Enoch Haga asks if this is a finite sequence. The larger these numbers get, the more opportunity for more factors.

Examples

			E.g., the 808th partition number 8151756509675604512522473567 = 5963320232189 * 1366982853893003.
		

Crossrefs

Intersection of A001358 and A000041.

Programs

  • Mathematica
    Select[PartitionsP[Range[0,450]],PrimeOmega[#]==2&] (* Harvey P. Dale, Sep 19 2016 *)
  • PARI
    { n=0; for (m=1, 10^9, p=numbpart(m); if (bigomega(p) == 2, write("b065728.txt", n++, " ", p); if (n==100, return)) ) } \\ Harry J. Smith, Oct 28 2009

Formula

A064911(a(n))*A167392(a(n)) = 1. [From Reinhard Zumkeller, Nov 03 2009]

Extensions

OFFSET changed from 0,1 to 1,1 by Harry J. Smith, Oct 28 2009

A065729 Numbers k such that the k-th partition number (A000041(k)) is a semiprime.

Original entry on oeis.org

7, 8, 12, 23, 65, 67, 76, 81, 87, 90, 92, 93, 95, 121, 123, 143, 146, 161, 181, 203, 218, 220, 235, 241, 251, 252, 287, 321, 330, 388, 406, 423, 437, 438, 443, 455, 456, 507, 555, 594, 603, 626, 646, 661, 665, 672, 685, 707, 708, 715, 720, 755, 808, 837, 856
Offset: 1

Views

Author

Patrick De Geest, Nov 18 2001

Keywords

Examples

			The 808th partition number 8151756509675604512522473567 = 5963320232189 * 1366982853893003.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[900],PrimeOmega[PartitionsP[#]]==2&] (* Harvey P. Dale, Nov 27 2024 *)
  • PARI
    isok(k) = { bigomega(numbpart(k))==2 } \\ Harry J. Smith, Oct 28 2009

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 28 2009
Missing a(38) = 507 added by Harry J. Smith, Oct 28 2009

A115214 Numbers n such that p(12n) is prime, where p(n) is the number of partitions of n.

Original entry on oeis.org

3, 11, 14, 18, 108, 178, 209, 214, 264, 704, 1085, 1354, 1523, 2550, 2770, 2831, 3709, 6055, 8241, 9011, 10590, 11360, 11780, 15358, 18305, 23576, 23628, 24331, 25589, 25620, 32435, 40219, 41373, 48204, 50239, 53174, 55984, 57521, 78831, 84136
Offset: 1

Views

Author

Robert G. Wilson v, Nov 14 2005

Keywords

Comments

n belongs to this sequence if and only if 12n belongs to A046063.

Crossrefs

Programs

  • Mathematica
    Select[ Range@34000, PrimeQ@ PartitionsP[12# ] &]

Extensions

More terms from Max Alekseyev, Dec 18 2011

A038753 Nonprime partition numbers.

Original entry on oeis.org

1, 15, 22, 30, 42, 56, 77, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173525
Offset: 1

Views

Author

Henry Bottomley, May 03 2000

Keywords

Crossrefs

Formula

A005171(a(n))*A167392(a(n)) = 1. [From Reinhard Zumkeller, Nov 03 2009]

A091689 Smallest partition number with n-th prime as factor.

Original entry on oeis.org

2, 3, 5, 7, 11, 3718, 386155, 627, 8349, 2436, 75175, 34262962, 14883, 3010, 526823, 281589, 386155, 1064144451, 124754, 63261, 105558, 2552338241, 4565, 1958, 75175, 101, 12132164, 118114304, 37274405776748077, 1505499, 37338, 6185689, 2323520, 966467, 90175434980549623
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 29 2004

Keywords

Comments

Erdős conjectured that every prime divides at least one value of the partition function, see Ahlgren and Ono link.

Examples

			For n = 10, A000040(10) = 29: a(10) = A000041(26) = 2436 = 29*7*3*2*2, as 29 does not divide smaller partition numbers.
		

Crossrefs

Formula

a(n) = A000041(A091690(n)).

Extensions

More terms from Amiram Eldar, May 16 2025

A094699 Number of prime partition numbers <= n-th partition number.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Reinhard Zumkeller, May 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Boole[PrimeQ[Table[PartitionsP[n], {n, 0, 100}]]]] (* Amiram Eldar, May 15 2025 *)
  • PARI
    a(n)=sum(i=1,n,ispseudoprime(numbpart(i))) \\ Charles R Greathouse IV, May 28 2015

Extensions

Offset corrected by Amiram Eldar, May 15 2025

A094700 Number of partition numbers that are smaller than and coprime to the n-th partition number.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 5, 6, 4, 4, 6, 7, 13, 9, 8, 5, 7, 5, 6, 8, 5, 8, 17, 7, 10, 6, 7, 10, 10, 10, 10, 10, 13, 12, 11, 36, 14, 13, 5, 9, 8, 12, 12, 31, 26, 14, 17, 19, 18, 14, 15, 10, 21, 10, 19, 30, 17, 9, 9, 59, 7, 16, 36, 11, 37, 23, 67, 19, 47, 19, 25, 39, 70, 13, 10, 52, 77, 24
Offset: 0

Views

Author

Reinhard Zumkeller, May 20 2004

Keywords

Comments

a(n) = n iff n <= 1 or A000041(n) is prime. [corrected by Amiram Eldar, May 15 2025]

Crossrefs

Programs

Extensions

Offset corrected by Amiram Eldar, May 15 2025

A096371 Arithmetic derivative of n-th partition number.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 8, 13, 31, 41, 92, 18, 1, 162, 368, 131, 324, 167, 483, 299, 1788, 841, 256, 1905, 1179, 3680, 2607, 2769, 1383, 7484, 4065, 4664, 10101, 8627, 8030, 1, 5135, 10538, 55107, 42077, 25514, 31443, 90990, 33270, 46823, 89849, 106449, 70151
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 19 2004

Keywords

Programs

  • Maple
    a:= n->(p->p*add(i[2]/i[1], i=ifactors(p)[2]))(combinat[numbpart](n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 04 2015
  • Mathematica
    a[n_] := If[n<2, 0, Function[p, p*Sum[i[[2]]/i[[1]], {i, FactorInteger[p]}]][PartitionsP[n]]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 04 2025, after Alois P. Heinz *)

Formula

a(n) = A003415(A000041(n)); a(A049575(n)) = 1.

A239232 a(n) = |{0 < k <= n: p(n+k) + 1 is prime}|, where p(.) is the partition function (A000041).

Original entry on oeis.org

1, 0, 0, 1, 3, 3, 3, 2, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 6, 6, 6, 6, 7, 8, 8, 9, 9, 9, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 13 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 3.
(ii) If n > 15, then p(n+k) - 1 is prime for some k = 1, ..., n.
(iii) If n > 38, then p(n+k) is prime for some k = 1, ..., n.
The conjecture implies that there are infinitely many positive integers m with p(m) + 1 (or p(m) - 1, or p(m)) prime.

Examples

			a(4) = 1 since p(4+4) + 1 = 22 + 1 = 23 is prime.
a(8) = 2 since p(8+1) + 1 = 31 and p(8+2) + 1 = 43 are both prime.
a(11) = 1 since p(11+8) + 1 = 491 is prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PartitionsP[n]
    a[n_]:=Sum[If[PrimeQ[p[n+k]+1],1,0],{k,1,n}]
    Table[a[n],{n,1,80}]

A113518 Numbers n such that P(13*n) is prime, where P(n) is the unrestricted partition number.

Original entry on oeis.org

1, 42, 122, 224, 1665, 1861, 2504, 2530, 4750, 4765, 7831, 9589, 9932, 12141, 15574, 15749, 22629, 23492, 24350, 25819, 29837, 29940, 31106, 43589, 44496, 47526, 47751, 48020, 49216, 49304, 49637, 58051, 62381, 64112, 66710, 67047, 69244, 73954, 76985, 77664, 82824, 91694, 92749, 99625
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 12 2006

Keywords

Comments

Integer n belongs to this sequence if and only if 13*n belongs to A046063.

Examples

			If n=224 then P(13*n) is a prime with 56 digits.
		

Crossrefs

Programs

Extensions

a(5)-a(20) from Robert G. Wilson v, Jan 17 2006
Terms a(21) onward from Max Alekseyev, Dec 18 2011
Previous Showing 11-20 of 26 results. Next