cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 110 results. Next

A381633 Number of ways to partition the prime indices of n into sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2025

Keywords

Comments

First differs from A050326 at 30, 60, 70, 90, ...
First differs from A339742 at 42, 66, 78, 84, ...
First differs from A381634 at a(210) = 12, A381634(210) = 10.
Also the number of factorizations on n into squarefree numbers > 1 with distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The A050320(60) = 6 ways to partition {1,1,2,3} into sets are:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
  {{1},{1},{2},{3}}
Of these, only the following have distinct block-sums:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
So a(60) = 3.
		

Crossrefs

Without distinct block-sums we have A050320, after sums A381078 (lower A381454).
For distinct blocks instead of sums we have A050326, after sums A381441, see A358914.
Taking block-sums (and sorting) gives A381634.
For constant instead of strict blocks we have A381635, see A381716, A381636.
Positions of 0 are A381806, superset of A293243.
Positions of 1 are A381870, superset of A293511.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
A000041 counts integer partitions, strict A000009.
A001055 count multiset partitions of prime indices, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Select[sfacs[n],UnsameQ@@hwt/@#&]],{n,100}]

A293511 Numbers that can be written as a product of distinct squarefree numbers in exactly one way.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Oct 11 2017

Keywords

Comments

First differs from A212166 at a(128) = 363, A212166(128) = 360.

Examples

			360 is not in the sequence because it has two possible expressions: 2*3*6*10 or 2*6*30.
		

Crossrefs

Programs

  • Mathematica
    nn=300;
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[nn],Length[sqfacs[#]]===1&]

A161908 Array read by rows in which row n lists the divisors of n that are >= sqrt(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 3, 6, 7, 4, 8, 3, 9, 5, 10, 11, 4, 6, 12, 13, 7, 14, 5, 15, 4, 8, 16, 17, 6, 9, 18, 19, 5, 10, 20, 7, 21, 11, 22, 23, 6, 8, 12, 24, 5, 25, 13, 26, 9, 27, 7, 14, 28, 29, 6, 10, 15, 30, 31, 8, 16, 32, 11, 33, 17, 34, 7, 35, 6, 9, 12, 18, 36, 37, 19, 38, 13, 39, 8, 10, 20, 40, 41, 7, 14, 21, 42, 43, 11, 22, 44, 9, 15, 45, 23, 46, 47, 8, 12, 16
Offset: 1

Views

Author

Omar E. Pol, Jun 27 2009

Keywords

Comments

T(n,A038548(n)) = n. - Reinhard Zumkeller, Mar 08 2013
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by this sequence. - Gus Wiseman, Mar 08 2021

Examples

			Array begins:
1;
2;
3;
2,4;
5;
3,6;
7;
4,8;
3,9;
5,10;
11;
4,6,12;
13;
7,14;
5,15;
4,8,16;
		

Crossrefs

Final terms are A000027.
Initial terms are A033677.
Row lengths are A038548 (number of superior divisors).
Row sums are A070038 (sum of superior divisors).
The inferior version is A161906.
The prime terms are counted by A341591.
The squarefree terms are counted by A341592.
The prime-power terms are counted by A341593.
The strictly superior version is A341673.
The strictly inferior version is A341674.
The odd terms are counted by A341675.
A001221 counts prime divisors, with sum A001414.
A056924 counts strictly superior (or strictly inferior divisors).
A207375 lists central divisors.
- Strictly Inferior: A060775, A070039, A333805, A333806, A341596, A341677.

Programs

  • Haskell
    a161908 n k = a161908_tabf !! (n-1) !! (k-1)
    a161908_row n = a161908_tabf !! (n-1)
    a161908_tabf = zipWith
                   (\x ds -> reverse $ map (div x) ds) [1..] a161906_tabf
    -- Reinhard Zumkeller, Mar 08 2013
  • Mathematica
    Table[Select[Divisors[n],#>=Sqrt[n]&],{n,100}]//Flatten (* Harvey P. Dale, Jan 01 2021 *)

Extensions

More terms from Sean A. Irvine, Nov 29 2010

A381431 Heinz number of the section-sum partition of the prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 10, 13, 11, 11, 16, 17, 15, 19, 14, 13, 13, 23, 20, 25, 17, 27, 22, 29, 13, 31, 32, 17, 19, 17, 25, 37, 23, 19, 28, 41, 17, 43, 26, 33, 29, 47, 40, 49, 35, 23, 34, 53, 45, 19, 44, 29, 31, 59, 26, 61, 37, 39, 64, 23, 19, 67, 38
Offset: 1

Views

Author

Gus Wiseman, Feb 26 2025

Keywords

Comments

The image first differs from A320340, A364347, A350838 in containing a(150) = 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			Prime indices of 180 are (3,2,2,1,1), with section-sum partition (6,3), so a(180) = 65.
The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
   7: {4}
  11: {5}
  10: {1,3}
  13: {6}
  11: {5}
  11: {5}
  16: {1,1,1,1}
		

Crossrefs

The conjugate is A048767, union A351294, complement A351295, fix A048768 (count A217605).
Taking length instead of sum in the definition gives A238745, conjugate A181819.
Partitions of this type are counted by A239455, complement A351293.
The union is A381432, complement A381433.
Values appearing only once are A381434, more than once A381435.
These are the Heinz numbers of rows of A381436, conjugate A381440.
Greatest prime index of each term is A381437, counted by A381438.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[Times@@Prime/@egs[prix[n]],{n,100}]

Formula

A122111(a(n)) = A048767(n).

A293243 Numbers that cannot be written as a product of distinct squarefree numbers.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2017

Keywords

Comments

First differs from A212164 at a(441).
Numbers n such that A050326(n) = 0. - Felix Fröhlich, Oct 04 2017
Includes A246547, and all numbers of the form p^a*q^b where p and q are primes, a >= 1 and b >= 3. - Robert Israel, Oct 10 2017
Also numbers whose prime indices cannot be partitioned into a set of sets. For example, the prime indices of 90 are {1,2,2,3}, and we have sets of sets: {{2},{1,2,3}}, {{1,2},{2,3}}, {{1},{2},{2,3}}, {{2},{3},{1,2}}, so 90 is not in the sequence. - Gus Wiseman, Apr 28 2025

Examples

			120 is not in the sequence because 120 = 2*6*10. 3600 is not in the sequence because 3600 = 2*6*10*30.
		

Crossrefs

These are the zeros of A050326.
Multiset partitions of this type (set of sets) are counted by A050342.
Twice-partitions of this type (set of sets) are counted by A279785, see also A358914.
Normal multisets of this type are counted by A292432, A292444, A381996, A382214.
The case of a unique choice is A293511, counted by A382079.
For distinct block-sums instead of blocks see A381806, A381990, A381992, A382075.
Partitions of this type are counted by A382078.
The complement is A382200, counted by A382077.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers.
A050345 counts factorizations partitioned into into distinct sets.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
          S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    select(t -> A[t]=0, [$1..N]); # Robert Israel, Oct 10 2017
  • Mathematica
    nn=500;
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[nn],Length[sqfacs[#]]===0&]

A341674 Irregular triangle read by rows giving the strictly inferior divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 3, 1, 2, 4, 1, 1, 2, 3, 5, 1, 1, 2, 4, 1, 3, 1, 2, 1, 5, 1, 2, 3, 4, 1, 1, 2, 1, 3, 1, 2, 4, 5, 1, 1, 2, 3, 6, 1, 1, 2, 4, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2021

Keywords

Comments

We define a divisor d|n to be strictly inferior if d < n/d. The number of strictly inferior divisors of n is A056924(n).

Examples

			Triangle begins:
     1: {}        16: 1,2        31: 1
     2: 1         17: 1          32: 1,2,4
     3: 1         18: 1,2,3      33: 1,3
     4: 1         19: 1          34: 1,2
     5: 1         20: 1,2,4      35: 1,5
     6: 1,2       21: 1,3        36: 1,2,3,4
     7: 1         22: 1,2        37: 1
     8: 1,2       23: 1          38: 1,2
     9: 1         24: 1,2,3,4    39: 1,3
    10: 1,2       25: 1          40: 1,2,4,5
    11: 1         26: 1,2        41: 1
    12: 1,2,3     27: 1,3        42: 1,2,3,6
    13: 1         28: 1,2,4      43: 1
    14: 1,2       29: 1          44: 1,2,4
    15: 1,3       30: 1,2,3,5    45: 1,3,5
		

Crossrefs

Initial terms are A000012.
Row lengths are A056924 (number of strictly inferior divisors).
Final terms are A060775.
Row sums are A070039 (sum of strictly inferior divisors).
The weakly inferior version is A161906.
The weakly superior version is A161908.
The odd terms are counted by A333805.
The prime terms are counted by A333806.
The squarefree terms are counted by A341596.
The strictly superior version is A341673.
The prime-power terms are counted by A341677.
A001221 counts prime divisors, with sum A001414.
A001222 counts prime-power divisors.
A005117 lists squarefree numbers.
A038548 counts superior (or inferior) divisors.
A207375 lists central divisors.

Programs

  • Mathematica
    Table[Select[Divisors[n],#
    				

A340596 Number of co-balanced factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 8
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be co-balanced if it has exactly A001221(n) factors.

Examples

			The a(n) co-balanced factorizations for n = 12, 24, 36, 72, 120, 144, 180:
  2*6    3*8     4*9     8*9     3*5*8     2*72     4*5*9
  3*4    4*6     6*6     2*36    4*5*6     3*48     5*6*6
         2*12    2*18    3*24    2*2*30    4*36     2*2*45
                 3*12    4*18    2*3*20    6*24     2*3*30
                         6*12    2*4*15    8*18     2*5*18
                                 2*5*12    9*16     2*6*15
                                 2*6*10    12*12    2*9*10
                                 3*4*10             3*3*20
                                                    3*4*15
                                                    3*5*12
                                                    3*6*10
		

Crossrefs

Positions of terms > 1 are A126706.
Positions of 1's are A303554.
The version for unlabeled multiset partitions is A319616.
The alt-balanced version is A340599.
The balanced version is A340653.
The cross-balanced version is A340654.
The twice-balanced version is A340655.
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 lists numbers with an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340600 counts unlabeled balanced multiset partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[#]==PrimeNu[n]&]],{n,100}]
  • PARI
    A340596(n, m=n, om=omega(n)) = if(1==n,(0==om), sumdiv(n, d, if((d>1)&&(d<=m), A340596(n/d, d, om-1)))); \\ Antti Karttunen, Jun 10 2024

Extensions

Data section extended up to a(120) by Antti Karttunen, Jun 10 2024

A381441 Number of multisets that can be obtained by partitioning the prime indices of n into a set of sets (set system) and taking their sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A050326 at a(210) = 13, A050326(210) = 15. This comes from the set systems {{3},{1,2,4}} and {{1,2},{3,4}}, and from {{4},{1,2,3}} and {{1,3},{2,4}}.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a strict factorization of n into squarefree numbers > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Sets of sets are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set of sets {1,1,2} -> {4}.

Examples

			The prime indices of 60 are {1,1,2,3}, with partitions into sets of sets:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
with block-sums: {1,6}, {3,4}, {1,2,4}, {1,3,3}, which are all different, so a(60) = 4.
		

Crossrefs

Before taking sums we had A050326, non-strict A050320.
Positions of 0 are A293243.
Positions of 1 are A293511.
This is the strict version of A381078 (lower A381454).
For distinct block-sums (instead of blocks) we have A381634, before sums A381633.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For sets of constant multisets (A050361) see A381715.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
More on set systems: A050342, A116539, A279785, A296120, A318361.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Union[Sort[Total/@prix/@#]&/@Select[facs[n],UnsameQ@@#&&And@@SquareFreeQ/@#&]]],{n,100}]

Formula

a(A002110(n)) = A066723(n).

A381718 Number of normal multiset partitions of weight n into sets with distinct sums.

Original entry on oeis.org

1, 1, 2, 6, 23, 106, 549, 3184, 20353, 141615, 1063399, 8554800, 73281988, 665141182, 6369920854, 64133095134, 676690490875, 7462023572238, 85786458777923, 1025956348473929, 12739037494941490
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(3) = 6 multiset partitions:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{2}}  {{1},{1,2}}
                    {{1},{2,3}}
                    {{2},{1,2}}
                    {{2},{1,3}}
                    {{1},{2},{3}}
The a(4) = 23 factorizations:
  2*3*6  5*30    3*30    2*30    210
         10*15   6*15    6*10    2*105
         2*5*15  2*3*15  2*3*10  3*70
         3*5*10                  5*42
                                 7*30
                                 6*35
                                 10*21
                                 2*3*35
                                 2*5*21
                                 2*7*15
                                 3*5*14
                                 2*3*5*7
		

Crossrefs

For distinct blocks instead of sums we have A116539, see A050326.
Without distinct sums we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279785.
Without strict blocks we have A326519.
Factorizations of this type are counted by A381633.
For constant instead of strict blocks we have A382203.
For distinct sizes instead of sums we have A382428, non-strict blocks A326517.
For equal instead of distinct block-sums we have A382429, non-strict blocks A326518.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(10)-a(11) from Robert Price, Mar 31 2025
a(12)-a(20) from Christian Sievers, Apr 05 2025

A341596 Number of strictly inferior squarefree divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 3, 2, 1, 4, 1, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 5, 1, 2, 3, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 3, 2, 2, 4, 1, 3, 2, 2, 1, 5, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2021

Keywords

Comments

We define a divisor d|n to be strictly inferior if d < n/d. Strictly inferior divisors are counted by A056924 and listed by A341674.

Examples

			The strictly inferior squarefree divisors of selected n:
n = 1  2  6  12  30  60  120  210  240  420  630  1050  1260
    --------------------------------------------------------
    {} 1  1  1   1   1   1    1    1    1    1    1     1
          2  2   2   2   2    2    2    2    2    2     2
             3   3   3   3    3    3    3    3    3     3
                 5   5   5    5    5    5    5    5     5
                     6   6    6    6    6    6    6     6
                         10   7    10   7    7    7     7
                              10   15   10   10   10    10
                              14        14   14   14    14
                                        15   15   15    15
                                             21   21    21
                                                  30    30
                                                        35
		

Crossrefs

Positions of ones are A000430.
The weakly inferior version is A333749.
The version counting odd instead of squarefree divisors is A333805.
The version counting prime instead of squarefree divisors is A333806.
The weakly superior version is A341592.
The strictly superior version is A341595.
The version counting prime-power instead of squarefree divisors is A341677.
A001221 counts prime divisors, with sum A001414.
A001222 counts prime power divisors.
A005117 lists squarefree numbers.
A033676 selects the greatest inferior divisor.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A207375 lists central divisors.
- Strictly Inferior: A060775, A070039, A341674.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],SquareFreeQ[#]&&#
    				
  • PARI
    a(n) = sumdiv(n, d, d^2 < n && issquarefree(d)); \\ Amiram Eldar, Nov 01 2024
Previous Showing 11-20 of 110 results. Next