cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-58 of 58 results.

A278237 a(n) = A046523(A263273(n)).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 12, 2, 6, 6, 16, 4, 12, 2, 12, 6, 6, 2, 24, 2, 6, 8, 12, 6, 30, 2, 64, 6, 6, 2, 36, 2, 6, 6, 24, 2, 30, 4, 12, 12, 6, 2, 48, 2, 30, 12, 12, 2, 24, 2, 24, 6, 6, 6, 60, 2, 6, 12, 32, 2, 30, 2, 12, 6, 12, 6, 72, 6, 6, 6, 12, 2, 30, 2, 48, 16, 6, 2, 60, 2, 30, 30, 24, 6, 60, 6, 12, 6, 6, 2, 192, 6, 6, 12, 36, 2, 30, 2, 48, 6, 30, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence works as a "sentinel" for A263273 by matching to any sequence that is obtained as f(A263273(n)), where f(n) is any function that depends only on the prime signature of n (see the index entry for "sequences computed from exponents in ..."). As of Nov 11 2016 no such sequences were present in the database, although a prefix of A050361 at first seemed to match. Note that A050361 really matches with A046523.

Crossrefs

Cf. A263273.
Differs from A046523 for the first time at n=17, where a(17)=4, while A046523(17)=2.
Cf. A050361.

Programs

Formula

a(n) = A046523(A263273(n)).

A356067 Number of integer partitions of n into relatively prime prime-powers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 3, 2, 5, 4, 11, 7, 18, 16, 26, 27, 43, 41, 65, 65, 92, 100, 137, 142, 194, 210, 270, 295, 379, 410, 519, 571, 699, 782, 947, 1046, 1267, 1414, 1673, 1870, 2213, 2465, 2897, 3230, 3757, 4210, 4871, 5427, 6265, 6997
Offset: 0

Views

Author

Gus Wiseman, Jul 28 2022

Keywords

Examples

			The a(5) = 1 through a(12) = 7 partitions:
  (32)  .  (43)   (53)   (54)    (73)    (74)     (75)
           (52)   (332)  (72)    (433)   (83)     (543)
           (322)         (432)   (532)   (92)     (552)
                         (522)   (3322)  (443)    (732)
                         (3222)          (533)    (4332)
                                         (542)    (5322)
                                         (722)    (33222)
                                         (3332)
                                         (4322)
                                         (5222)
                                         (32222)
		

Crossrefs

This is the relatively prime case of A023894, facs A000688, w/ 1's A023893.
For strict instead of coprime: A054685, facs A050361, with 1's A106244.
The version for factorizations instead of partitions is A354911.
A000041 counts partitions, strict A000009.
A072233 counts partitions by sum and length.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A279784 counts twice-partitions where the latter partitions are constant.
A289509 lists numbers whose prime indices are relatively prime.
A355743 lists numbers with prime-power prime indices, squarefree A356065.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@PrimePowerQ/@#&&GCD@@#==1&]],{n,0,30}]

A357859 Number of integer factorizations of 2n into distinct even factors.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 4, 1, 2, 1, 5, 1, 3, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 3, 1, 5, 1, 2, 1, 6, 1, 2, 1, 5, 1, 3, 1, 3, 1, 3, 1, 7, 1, 2, 1, 3, 1, 3, 1, 7, 1, 2, 1, 6, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 17 2022

Keywords

Examples

			The a(n) factorizations for n = 2, 4, 12, 24, 32, 48, 60, 96:
  (4)  (8)    (24)    (48)     (64)     (96)      (120)     (192)
       (2*4)  (4*6)   (6*8)    (2*32)   (2*48)    (2*60)    (2*96)
              (2*12)  (2*24)   (4*16)   (4*24)    (4*30)    (4*48)
                      (4*12)   (2*4*8)  (6*16)    (6*20)    (6*32)
                      (2*4*6)           (8*12)    (10*12)   (8*24)
                                        (2*6*8)   (2*6*10)  (12*16)
                                        (2*4*12)            (4*6*8)
                                                            (2*4*24)
                                                            (2*6*16)
                                                            (2*8*12)
		

Crossrefs

The version for partitions instead of factorizations is A000009.
Positions of 1's are A004280.
The non-strict version is A340785.
Including odd n gives A357860.
A000005 counts divisors.
A001055 counts factorizations.
A001221 counts distinct prime factors, sum A001414.
A001222 counts prime-power divisors.
A050361 counts strict factorizations into prime powers.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[2*n],UnsameQ@@#&&OddQ[Times@@(#+1)]&]],{n,100}]

A357860 Number of integer factorizations of n into distinct even factors.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 3, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 17 2022

Keywords

Examples

			The factorizations of 36..48 are (empty columns indicated by dots):
  36    .  38  .  40    .  42  .  44    .  46  .  48
  2*18            2*20            2*22            6*8
                  4*10                            2*24
                                                  4*12
                                                  2*4*6
		

Crossrefs

The non-strict version is A349906.
Same as A357859 with zeros every other term.
A000005 counts divisors.
A001055 counts factorizations.
A001221 counts distinct prime factors, sum A001414.
A001222 counts prime-power divisors.
A050361 counts strict factorizations into prime powers.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@#&&OddQ[Times@@(#+1)]&]],{n,100}]

A381872 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks having a common sum.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2025

Keywords

Comments

First differs from A321455 at a(144) = 4, A321455(144) = 3.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 144 are {1,1,1,1,2,2}, with the following 4 multiset partitions having common block sum:
  {{1,1,1,1,2,2}}
  {{2,2},{1,1,1,1}}
  {{1,1,2},{1,1,2}}
  {{2},{2},{1,1},{1,1}}
with sums: 8, 4, 4, 2, of which 3 are distinct, so a(144) = 3.
The prime indices of 1296 are {1,1,1,1,2,2,2,2}, with the following 7 multiset partitions having common block sum:
  {{1,1,1,1,2,2,2,2}}
  {{2,2,2},{1,1,1,1,2}}
  {{1,1,2,2},{1,1,2,2}}
  {{2,2},{2,2},{1,1,1,1}}
  {{2,2},{1,1,2},{1,1,2}}
  {{1,2},{1,2},{1,2},{1,2}}
  {{2},{2},{2},{2},{1,1},{1,1}}
with sums: 12, 6, 6, 4, 4, 3, 2, of which 5 are distinct, so a(1296) = 5.
		

Crossrefs

With equal blocks instead of sums we have A089723.
Without equal sums we have A317141, before sums A001055, lower A300383.
Positions of terms > 1 are A321454.
Before taking sums we had A321455.
With distinct instead of equal sums we have A381637, before sums A321469.
A000041 counts integer partitions, strict A000009, constant A000005.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For sets of constant multisets (A050361) see A381715.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],SameQ@@Total/@#&]]],{n,100}]

A384179 Number of ways to choose strict integer partitions of each conjugate prime index of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 4, 1, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 1, 4, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 4, 2, 1, 2, 1, 3, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 180 are {1,1,2,2,3}, conjugate {5,3,1}, and we have choices:
  {{5},{3},{1}}
  {{5},{2,1},{1}}
  {{4,1},{3},{1}}
  {{4,1},{2,1},{1}}
  {{3,2},{3},{1}}
  {{3,2},{2,1},{1}}
so a(180) = 6.
		

Crossrefs

Positions of 1 are A037143, complement A033942.
For multiplicities instead of indices we have A050361.
Adding up over all integer partitions gives A270995, disjoint A279790, strict A279375.
The conjugate version is A357982, disjoint A383706.
The disjoint case is A384005.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non Look-and-Say or non section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    fop[y_]:=Join@@@Tuples[strptns/@y];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[fop[conj[prix[n]]]],{n,100}]

A385418 The number of unordered factorizations of n into powers of primes of the form p^(2^k-1) where p is prime and k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 28 2025

Keywords

Comments

First differs from A304327 and A368248 at n = 64.
First differs from A061704 and A362852 at n = 128.
The number of unordered factorizations of n into powers of primes in A036537.

Examples

			  n | a(n) | factorizations
  --+------+-------------------------------------------------------------------
  2 |    8 | 2 * 2 * 2, 2^3
  3 |   64 | 2 * 2 * 2 * 2 * 2 * 2, 2 * 2 * 2 * 2^3, 2^3 * 2^3
  4 |  128 | 2 * 2 * 2 * 2 * 2 * 2 * 2, 2 * 2 * 2 * 2 * 2^3, 2 * 2^3 * 2^3, 2^7
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k <= n, T[n - k, k] + T[n, 2*k + 1], Boole[n == 0]]; f[p_, e_] := T[e, 1];
    a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    t(n, k) = if(k <= n, t(n-k, k) + t(n, 2*k+1), n == 0);
    a(n) = vecprod(apply(x -> t(x, 1), factor(n)[,2]));

Formula

Multiplicative with a(p^e) = A000929(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{k>=2} zeta(2^k-1) = 1.21213028603089660618... .

A328721 Dirichlet g.f.: Product_{p prime, k>=1} (1 + p^(-s*k)) / (1 - p^(-s*k)).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 8, 4, 4, 2, 8, 2, 4, 4, 14, 2, 8, 2, 8, 4, 4, 2, 16, 4, 4, 8, 8, 2, 8, 2, 24, 4, 4, 4, 16, 2, 4, 4, 16, 2, 8, 2, 8, 8, 4, 2, 28, 4, 8, 4, 8, 2, 16, 4, 16, 4, 4, 2, 16, 2, 4, 8, 40, 4, 8, 2, 8, 4, 8, 2, 32, 2, 4, 8, 8, 4, 8, 2, 28
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 26 2019

Keywords

Comments

Dirichlet convolution of A000688 with A050361.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (Times @@ PartitionsP[Last /@ FactorInteger[n/#]]) (Times @@ PartitionsQ[Last /@ FactorInteger[#]]) &], {n, 1, 80}]

Formula

a(n) = Sum_{d|n} A000688(n/d) * A050361(d).
If n = Product (p_j^k_j) then a(n) = Product (A015128(k_j)).
Previous Showing 51-58 of 58 results.