cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A321834 a(n) = Sum_{d|n, n/d==1 mod 4} d^10 - Sum_{d|n, n/d==3 mod 4} d^10.

Original entry on oeis.org

1, 1024, 59048, 1048576, 9765626, 60465152, 282475248, 1073741824, 3486725353, 10000001024, 25937424600, 61916315648, 137858491850, 289254653952, 576640684048, 1099511627776, 2015993900450, 3570406761472, 6131066257800, 10240001048576
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A101455.
Cf. A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, A321832, A321833, this sequence, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^10 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(10*e+10) - s[p]^(e+1))/(p^10 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( a(n)=sumdiv(n, d, if(bittest(n\d,0),(2-n\d%4)*d^10)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^10*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(10*e+10) - A101455(p)^(e+1))/(p^10 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^11 / 11, where c = beta(11) = 50521*Pi^11/14863564800 = 0.999994374973... and beta is the Dirichlet beta function. (End)
a(n) = Sum_{d|n} (n/d)^10*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A321835 a(n) = Sum_{d|n, n/d==1 mod 4} d^11 - Sum_{d|n, n/d==3 mod 4} d^11.

Original entry on oeis.org

1, 2048, 177146, 4194304, 48828126, 362795008, 1977326742, 8589934592, 31380882463, 100000002048, 285311670610, 743004176384, 1792160394038, 4049565167616, 8649707208396, 17592186044416, 34271896307634, 64268047284224, 116490258898218
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A101455.
Cf. A321807 - A321836 for related sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, A321832, A321833, A321834, this sequence, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^11 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(11*e+11) - s[p]^(e+1))/(p^11 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( a(n)=sumdiv(n,d,if(bittest(n\d,0),(2-n\d%4)*d^11)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^11*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(11*e+11) - A101455(p)^(e+1))/(p^11 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^12 / 12, where c = beta(12) = 0.99999812235..., and beta is the Dirichlet beta function. (End)
a(n) = Sum_{d|n} (n/d)^11*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A050461 a(n) = Sum_{d|n, n/d=1 mod 4} d^2.

Original entry on oeis.org

1, 4, 9, 16, 26, 36, 49, 64, 82, 104, 121, 144, 170, 196, 234, 256, 290, 328, 361, 416, 442, 484, 529, 576, 651, 680, 738, 784, 842, 936, 961, 1024, 1090, 1160, 1274, 1312, 1370, 1444, 1530, 1664, 1682, 1768, 1849, 1936, 2132, 2116, 2209
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Not multiplicative: a(3)*a(7) <> a(21), for example. - R. J. Mathar, Dec 20 2011

Crossrefs

Programs

  • Haskell
    a050461 n = sum [d ^ 2 | d <- a027750_row n, mod (div n d) 4 == 1]
    -- Reinhard Zumkeller, Mar 06 2012
    
  • Maple
    A050461 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if (n/d) mod 4 = 1 then
                            a := a+d^2 ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050461(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    a[n_] := DivisorSum[n, Boole[Mod[n/#, 4] == 1]*#^2&]; Array[a, 50] (* Jean-François Alcover, Feb 12 2018 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d % 4 == 1) * d^2); \\ Amiram Eldar, Nov 05 2023

Formula

a(n) = A050470(n) + A050465(n). - Reinhard Zumkeller, Mar 06 2012
From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A076577(n) - A050465(n).
a(n) = (A050470(n) + A076577(n))/2.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Pi^3/64 + 7*zeta(3)/16 = 1.010372968262... . (End)

A050465 a(n) = Sum_{d|n, n/d=3 mod 4} d^2.

Original entry on oeis.org

0, 0, 1, 0, 0, 4, 1, 0, 9, 0, 1, 16, 0, 4, 26, 0, 0, 36, 1, 0, 58, 4, 1, 64, 0, 0, 82, 16, 0, 104, 1, 0, 130, 0, 26, 144, 0, 4, 170, 0, 0, 232, 1, 16, 234, 4, 1, 256, 49, 0, 290, 0, 0, 328, 26, 64, 370, 0, 1, 416, 0, 4, 523, 0, 0, 520, 1, 0, 538, 104, 1, 576, 0
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Programs

  • Haskell
    a050465 n = sum [d ^ 2 | d <- a027750_row n, mod (div n d) 4 == 3]
    -- Reinhard Zumkeller, Mar 06 2012
    
  • Mathematica
    a[n_] := DivisorSum[n, #^2 &, Mod[n/#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Nov 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d % 4 == 3) * d^2); \\ Amiram Eldar, Nov 05 2023

Formula

a(n) = A050461(n) - A050470(n). - Reinhard Zumkeller, Mar 06 2012
From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A076577(n) - A050461(n).
a(n) = (A076577(n) - A050470(n))/2.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 7*zeta(3)/16 - Pi^3/64 = 0.041426822002... . (End)

Extensions

Offset fixed by Reinhard Zumkeller, Mar 06 2012

A322084 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, n/d==1 (mod 4)} d^k - Sum_{d|n, n/d==3 (mod 4)} d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 4, 2, 1, 1, 8, 8, 4, 2, 1, 16, 26, 16, 6, 0, 1, 32, 80, 64, 26, 4, 0, 1, 64, 242, 256, 126, 32, 6, 1, 1, 128, 728, 1024, 626, 208, 48, 8, 1, 1, 256, 2186, 4096, 3126, 1280, 342, 64, 7, 2, 1, 512, 6560, 16384, 15626, 7744, 2400, 512, 73, 12, 0, 1, 1024, 19682, 65536, 78126, 46592, 16806, 4096, 703, 104, 10, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,  ...
  1,  2,   4,    8,    16,    32,  ...
  0,  2,   8,   26,    80,   242,  ...
  1,  4,  16,   64,   256,  1024,  ...
  2,  6,  26,  126,   626,  3126,  ...
  0,  4,  32,  208,  1280,  7744,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 + x^(2 j)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, if(d%2, (-1)^((d-1)/2)*(n/d)^k))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 + x^(2*j)).

A120030 Expansion of theta_4(q)^2*theta_4(q^2)^4 in powers of q.

Original entry on oeis.org

1, -4, -4, 32, -4, -104, 32, 192, -4, -292, -104, 480, 32, -680, 192, 832, -4, -1160, -292, 1440, -104, -1536, 480, 2112, 32, -2604, -680, 2624, 192, -3368, 832, 3840, -4, -3840, -1160, 4992, -292, -5480, 1440, 5440, -104, -6728, -1536, 7392, 480, -7592, 2112, 8832, 32, -9412, -2604
Offset: 0

Views

Author

Michael Somos, Jun 05 2006

Keywords

Comments

Number 8 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*q - 4*q^2 + 32*q^3 - 4*q^4 - 104*q^5 + 32*q^6 + 192*q^7 - 4*q^8 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.7).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(4), 3), 51); A[1] - 4*A[2]; /* Michael Somos, May 24 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^3 (QPochhammer[ q] / QPochhammer[ q^4])^2)^2, {q, 0, n}]; (* Michael Somos, May 24 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -4 DivisorSum[ n, #^2 KroneckerSymbol[ -4, #] &]]; (* Michael Somos, May 24 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -4 * sumdiv( n, d, d^2 * kronecker( -4, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^2 + A)^6 / eta(x^4 + A)^4, n))};
    

Formula

Expansion of eta(q)^4 * eta(q^2)^6 / eta(q^4)^4 in powers of q.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^2 * (u - v)^2 - 4 * u*w * (v - w) * (u - 2*v).
Euler transform of period 4 sequence [ -4, -10, -4, -6, ...].
G.f.: 1 - 4 * Sum_{k>0} A056594(k-1) * k^2 * x^k / (1 - x^k).
Expansion of phi(-q)^2 * phi(-q^2)^4 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Aug 15 2007
G.f.: (Sum_{k in Z} (-1)^k * x^k^2)^2 * (Sum_{k in Z} (-1)^k * x^(2*k^2))^4.
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 128 (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A050470.
a(n) = -4 * A002173(n) unless n=0.
Convolution of A000141 and A128692.

A122854 Expansion of phi(q)^2*psi(q)^4 in powers of q where phi(),psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 8, 26, 48, 73, 120, 170, 208, 290, 360, 384, 528, 651, 656, 842, 960, 960, 1248, 1370, 1360, 1682, 1848, 1898, 2208, 2353, 2320, 2810, 3120, 2880, 3480, 3722, 3504, 4420, 4488, 4224, 5040, 5330, 5208, 5760, 6240, 5905, 6888, 7540, 6736, 7922, 8160, 7680
Offset: 0

Views

Author

Michael Somos, Sep 14 2006

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Crossrefs

A050458(2n+1) = A050470(2n+1) = a(n).
Cf. A152584.

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[q^(-1/2)*(EllipticTheta[2, 0, q^(1/2)]^4 * EllipticTheta[3, 0, q]^2)/16, {q, 0, n}]; Table[A122854[n], {n, 0, 50}] (* G. C. Greubel, Jan 04 2018 *)
  • PARI
    {a(n)= local(A, p, e, f); if(n<0, 0, n=2*n+1; A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, f=(-1)^(p\2); (p^(2*e+2)-f^(e+1))/(p^2-f)))))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^18/(eta(x+A)^8*eta(x^4+A)^4), n))}

Formula

Expansion of q^(-1/2)eta(q^2)^18/(eta(q)^8*eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [ 8, -10, 8, -6, ...].
a(n)=b(2n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = ((p^2)^(e+1)-1)/(p^2-1) if p == 1 (mod 4), b(p^e) = ((p^2)^(e+1)-(-1)^(e+1))/(p^2+1) if p == 3 (mod 4).
G.f.: Sum_{k>0 odd} k^2*x^k/(1+x^(2k)) = Product_{k>0} (1-x^(2k))^6*(1+x^k)^8/(1+x^(2k))^4.
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^3/24 = 1.291928... (A152584). - Amiram Eldar, Dec 29 2023

A138501 Expansion of (eta(q)^2 * eta(q^4)^4 / eta(q^2)^3)^2 in powers of q.

Original entry on oeis.org

1, -4, 8, -16, 26, -32, 48, -64, 73, -104, 120, -128, 170, -192, 208, -256, 290, -292, 360, -416, 384, -480, 528, -512, 651, -680, 656, -768, 842, -832, 960, -1024, 960, -1160, 1248, -1168, 1370, -1440, 1360, -1664, 1682, -1536, 1848, -1920, 1898, -2112, 2208, -2048, 2353, -2604
Offset: 1

Views

Author

Michael Somos, Mar 20 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 4*q^2 + 8*q^3 - 16*q^4 + 26*q^5 - 32*q^6 + 48*q^7 - 64*q^8 + 73*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, #^2 Mod[n/#, 2] (-1)^Quotient[n/#, 2] &]]; (* Michael Somos, Aug 26 2015 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q]^2 QPochhammer[ q^4]^4 / QPochhammer[ q^2]^3)^2, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, d^2 * (n / d % 2) * (-1)^(n / d \ 2)))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<0, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -4^e, f = (-1)^(p\2); ((p^2)^(e+1) - f^(e+1)) / (p^2 - f))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n) ; polcoeff( (eta(x + A)^2 * eta(x^4 + A)^4 / eta(x^2 + A)^3)^2, n))};

Formula

Expansion of q * (phi(-q) * psi(q^2)^2)^2 in powers of q where phi(), psi() are Ramanujan theta functions.
Euler transform of period 4 sequence [ -4, 2, -4, -6, ...].
a(n) is multiplicative with a(2^e) = -(4^e) if e>0, a(p^e) = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 4), a(p^e) = ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1) if p == 3 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2 (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138502.
G.f.: x * (Product_{k>0} (1 - x^k)^3 * (1 + x^k) * (1 + x^(2*k))^4)^2.
a(n) = -(-1)^n * A050470(n).

A364013 Expansion of Sum_{k>0} k^2 * x^k / (1 + x^(3*k)).

Original entry on oeis.org

1, 4, 9, 15, 25, 36, 50, 60, 81, 99, 121, 135, 170, 200, 225, 239, 289, 324, 362, 371, 450, 483, 529, 540, 626, 680, 729, 750, 841, 891, 962, 956, 1089, 1155, 1250, 1215, 1370, 1448, 1530, 1483, 1681, 1800, 1850, 1811, 2025, 2115, 2209, 2151, 2451, 2479, 2601, 2550, 2809, 2916, 3026
Offset: 1

Views

Author

Seiichi Manyama, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^(n/#) * #^2 &, Mod[n/#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 01 2023 *)
  • PARI
    a(n) = -sumdiv(n, d, (n/d%3==1)*(-1)^(n/d)*d^2);

Formula

a(n) = -Sum_{d|n, n/d==1 (mod 3)} (-1)^(n/d) * d^2.
Previous Showing 11-19 of 19 results.