cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-54 of 54 results.

A059863 a(n) = Product_{i=3..n} (prime(i)-4).

Original entry on oeis.org

1, 1, 1, 3, 21, 189, 2457, 36855, 700245, 17506125, 472665375, 15597957375, 577124422875, 22507852492125, 967837657161375, 47424045200907375, 2608322486049905625, 148674381704844620625, 9366486047405211099375, 627554565176149143658125, 43301264997154290912410625
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

References

  • See A059862 for references.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.

Crossrefs

Programs

  • PARI
    a(n) = prod(i=3, n, prime(i)-4); \\ Michel Marcus, Aug 25 2019

Extensions

More terms from Michel Marcus, Aug 25 2019

A059864 a(n) = Product_{i=4..n} (prime(i)-5), where prime(i) is i-th prime.

Original entry on oeis.org

1, 1, 1, 2, 12, 96, 1152, 16128, 290304, 6967296, 181149696, 5796790272, 208684449792, 7930009092096, 333060381868032, 15986898329665536, 863292509801938944, 48344380548908580864, 2997351594032332013568
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Comments

Such products arise in Hardy-Littlewood prime k-tuplet conjectural formulas.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
  • R. K. Guy, Unsolved Problems in Number Theory, A8, A1
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
  • G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else (&*[NthPrime(j) -5: j in [4..n]]): n in [1..30]]; // G. C. Greubel, Feb 02 2023
    
  • Mathematica
    Join[{1,1,1},FoldList[Times,Prime[Range[4,20]]-5]] (* Harvey P. Dale, Dec 29 2018 *)
  • PARI
    a(n) = prod(k=4, n, prime(k)-5); \\ Michel Marcus, Dec 12 2017
    
  • SageMath
    def A059864(n): return product(nth_prime(j) -5 for j in range(4,n+1))
    [A059864(n) for n in range(1,31)] # G. C. Greubel, Feb 02 2023

A179968 'AT(n,k)' triangle read by rows. AT(n,k) is the number of aperiodic k-compositions of n.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 4, 6, 4, 0, 1, 4, 9, 8, 5, 0, 1, 6, 15, 20, 15, 6, 0, 1, 6, 21, 32, 35, 18, 7, 0, 1, 8, 27, 56, 70, 54, 28, 8, 0, 1, 8, 36, 80, 125, 120, 84, 32, 9, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 0
Offset: 1

Views

Author

John P. McSorley, Aug 03 2010

Keywords

Comments

A k-composition of n is an ordered collection of k positive integers (parts) which sum to n.
A k-composition is aperiodic (primitive) if its period is k, or if it is not the concatenation of at least two smaller compositions.
Let AT(n,k) denote the number of aperiodic k-compositions of n.
This sequence is the 'AT(n,k)' triangle read by rows.
If we form the row sum sequence of the 'AT(n, k)' triangle above we get sequence A056278, except for the first term.
If we form the triangle which counts the aperiodic k-compositions of n up to cyclic equivalence, ATE(n, k), and place an extra 0 at the end of each row of the 'ATE(n, k)' triangle, we get sequence A051168 (Lyndon words).

Examples

			The triangle begins
  1
  1, 0
  1, 2,  0
  1, 2,  3,  0
  1, 4,  6,  4,   0
  1, 4,  9,  8,   5,   0
  1, 6, 15, 20,  15,   6,  0
  1, 6, 21, 32,  35,  18,  7,  0
  1, 8, 27, 56,  70,  54, 28,  8, 0
  1, 8, 36, 80, 125, 120, 84, 32, 9, 0
For example, row 8 is 1, 6, 21, 32, 35, 18, 7, 0.
We have AT(8,2)=6 because there are 6 aperiodic 2-compositions of 8, namely: 17, 71, 26, 62, 35, 53. The remaining 2-composition of 8 is 44, it is not aperiodic.
We have AT(8,3)=21 because all 21 3-compositions of 8 are aperiodic.
		

References

  • John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010. [Apparently unpublished as of Mar 27 2017]

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:=(k/n) * Sum[MoebiusMu[d] Binomial[n/d, k/d], {d, Divisors[GCD[n, k]]}]; Flatten[Table[T[n, k], {n, 11}, {k, n}]] (* Indranil Ghosh, Mar 27 2017, after the formula by Andrew Howroyd *)

Formula

T(n,k) = k * A051168(n,k). - Andrew Howroyd, Mar 26 2017
T(n,k) = (k/n) * Sum_{d | gcd(n,k)} mu(d) * binomial(n/d,k/d). - Andrew Howroyd, Mar 26 2017
G.f.: Sum_{k>=1}mu(k)y^k A(x^k)/(1 - y^k A(x^k)) where mu(k) is the Moebius Mu function and A(x) = x/(1-x). - Geoffrey Critzer, Aug 05 2022

Extensions

a(56)-a(66) from Andrew Howroyd, Mar 26 2017

A263318 Number of aperiodic necklaces (Lyndon words) with 9 black beads and n white beads.

Original entry on oeis.org

0, 1, 5, 18, 55, 143, 333, 715, 1430, 2700, 4862, 8398, 13995, 22610, 35530, 54477, 81719, 120175, 173583, 246675, 345345, 476901, 650325, 876525, 1168695, 1542684, 2017356, 2615085, 3362260, 4289780, 5433714, 6835972, 8544965, 10616463, 13114465, 16112057
Offset: 0

Views

Author

Criel Merino, Pedro Antonio, Oct 14 2015

Keywords

Comments

A row of triangle A051168.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x (x^4 - x^3 + 3*x^2 - x + 1))/((x^2 + x + 1)^3 (1 - x)^9), {x, 0, 40}], x] (* Wesley Ivan Hurt, Oct 15 2015 *)
    CoefficientList[Series[((-1+x^3)^-3-(-1+x)^-9)/9,{x,0,40}],x] (* Herbert Kociemba, Oct 16 2016 *)
    LinearRecurrence[{6,-15,23,-33,51,-64,63,-63,64,-51,33,-23,15,-6,1},{0,1,5,18,55,143,333,715,1430,2700,4862,8398,13995,22610,35530},40] (* Harvey P. Dale, Feb 10 2023 *)
  • PARI
    a(n)= (1/(n+9))*sumdiv(gcd(n+9,9), d, moebius(d)*binomial( (n+9)/d , 9/d )); \\ Michel Marcus, Oct 14 2015
    
  • Python
    from sympy import mobius, binomial, gcd, divisors
    print([sum(mobius(d) * binomial((n + 9)//d, 9//d) for d in divisors(gcd(n + 9, 9))) // (n + 9) for n in range(51)]) # Indranil Ghosh, Mar 26 2017

Formula

a(n) = (1/(n+9))*Sum_{d divides gcd(n+9,9)} mu(d)*binomial((n+9)/d, 9/d).
G.f.: (x*(x^4-x^3+3*x^2-x+1))/((x^2+x+1)^3*(1-x)^9).
G.f.: ((-1+x^3)^-3-(-1+x)^-9)/9. - Herbert Kociemba, Oct 16 2016

Extensions

More terms from Michel Marcus, Oct 14 2015
Previous Showing 51-54 of 54 results.