A059863
a(n) = Product_{i=3..n} (prime(i)-4).
Original entry on oeis.org
1, 1, 1, 3, 21, 189, 2457, 36855, 700245, 17506125, 472665375, 15597957375, 577124422875, 22507852492125, 967837657161375, 47424045200907375, 2608322486049905625, 148674381704844620625, 9366486047405211099375, 627554565176149143658125, 43301264997154290912410625
Offset: 1
- See A059862 for references.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
A059864
a(n) = Product_{i=4..n} (prime(i)-5), where prime(i) is i-th prime.
Original entry on oeis.org
1, 1, 1, 2, 12, 96, 1152, 16128, 290304, 6967296, 181149696, 5796790272, 208684449792, 7930009092096, 333060381868032, 15986898329665536, 863292509801938944, 48344380548908580864, 2997351594032332013568
Offset: 1
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
- R. K. Guy, Unsolved Problems in Number Theory, A8, A1
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
- G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954
- G. C. Greubel, Table of n, a(n) for n = 1..350
- C. K. Caldwell, Prime k-tuple Conjecture
- Steven R. Finch, Hardy-Littlewood Constants [Broken link]
- Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
- G. H. Hardy and J. E. Littlewood, Some problems of 'partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- G. Polya, Heuristic reasoning in the theory of numbers, Am. Math. Monthly,66 (1959), 375-384.
-
[n le 3 select 1 else (&*[NthPrime(j) -5: j in [4..n]]): n in [1..30]]; // G. C. Greubel, Feb 02 2023
-
Join[{1,1,1},FoldList[Times,Prime[Range[4,20]]-5]] (* Harvey P. Dale, Dec 29 2018 *)
-
a(n) = prod(k=4, n, prime(k)-5); \\ Michel Marcus, Dec 12 2017
-
def A059864(n): return product(nth_prime(j) -5 for j in range(4,n+1))
[A059864(n) for n in range(1,31)] # G. C. Greubel, Feb 02 2023
A179968
'AT(n,k)' triangle read by rows. AT(n,k) is the number of aperiodic k-compositions of n.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 4, 6, 4, 0, 1, 4, 9, 8, 5, 0, 1, 6, 15, 20, 15, 6, 0, 1, 6, 21, 32, 35, 18, 7, 0, 1, 8, 27, 56, 70, 54, 28, 8, 0, 1, 8, 36, 80, 125, 120, 84, 32, 9, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 0
Offset: 1
The triangle begins
1
1, 0
1, 2, 0
1, 2, 3, 0
1, 4, 6, 4, 0
1, 4, 9, 8, 5, 0
1, 6, 15, 20, 15, 6, 0
1, 6, 21, 32, 35, 18, 7, 0
1, 8, 27, 56, 70, 54, 28, 8, 0
1, 8, 36, 80, 125, 120, 84, 32, 9, 0
For example, row 8 is 1, 6, 21, 32, 35, 18, 7, 0.
We have AT(8,2)=6 because there are 6 aperiodic 2-compositions of 8, namely: 17, 71, 26, 62, 35, 53. The remaining 2-composition of 8 is 44, it is not aperiodic.
We have AT(8,3)=21 because all 21 3-compositions of 8 are aperiodic.
- John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010. [Apparently unpublished as of Mar 27 2017]
-
T[n_, k_]:=(k/n) * Sum[MoebiusMu[d] Binomial[n/d, k/d], {d, Divisors[GCD[n, k]]}]; Flatten[Table[T[n, k], {n, 11}, {k, n}]] (* Indranil Ghosh, Mar 27 2017, after the formula by Andrew Howroyd *)
A263318
Number of aperiodic necklaces (Lyndon words) with 9 black beads and n white beads.
Original entry on oeis.org
0, 1, 5, 18, 55, 143, 333, 715, 1430, 2700, 4862, 8398, 13995, 22610, 35530, 54477, 81719, 120175, 173583, 246675, 345345, 476901, 650325, 876525, 1168695, 1542684, 2017356, 2615085, 3362260, 4289780, 5433714, 6835972, 8544965, 10616463, 13114465, 16112057
Offset: 0
- Pedro Antonio, Table of n, a(n) for n = 0..100
- David Broadhurst and Xavier Roulleau, Number of partitions of modular integers, arXiv:2502.19523 [math.NT], 2025. See p. 19.
- Index entries for sequences related to Lyndon words
- Index entries for linear recurrences with constant coefficients, signature (6, -15, 23, -33, 51, -64, 63, -63, 64, -51, 33, -23, 15, -6, 1).
-
CoefficientList[Series[(x (x^4 - x^3 + 3*x^2 - x + 1))/((x^2 + x + 1)^3 (1 - x)^9), {x, 0, 40}], x] (* Wesley Ivan Hurt, Oct 15 2015 *)
CoefficientList[Series[((-1+x^3)^-3-(-1+x)^-9)/9,{x,0,40}],x] (* Herbert Kociemba, Oct 16 2016 *)
LinearRecurrence[{6,-15,23,-33,51,-64,63,-63,64,-51,33,-23,15,-6,1},{0,1,5,18,55,143,333,715,1430,2700,4862,8398,13995,22610,35530},40] (* Harvey P. Dale, Feb 10 2023 *)
-
a(n)= (1/(n+9))*sumdiv(gcd(n+9,9), d, moebius(d)*binomial( (n+9)/d , 9/d )); \\ Michel Marcus, Oct 14 2015
-
from sympy import mobius, binomial, gcd, divisors
print([sum(mobius(d) * binomial((n + 9)//d, 9//d) for d in divisors(gcd(n + 9, 9))) // (n + 9) for n in range(51)]) # Indranil Ghosh, Mar 26 2017
Comments