cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 64 results. Next

A057825 Values of k for which A003418(k) - 1 is prime.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 19, 20, 21, 22, 23, 24, 29, 30, 32, 33, 34, 35, 36, 47, 48, 61, 62, 63, 97, 98, 99, 100, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 233, 234, 235, 236, 237, 238, 307, 308, 309, 310, 401, 402, 403, 404, 405, 406, 407, 408, 887, 888, 889, 890
Offset: 1

Views

Author

Labos Elemer, Nov 08 2000

Keywords

Comments

Fewer distinct primes than distinct values of a(n) are generated. So, e.g., k = 97, 98, 99, 100 all correspond to lcm([1..97]) - 1 = 69720375229712477164533808935312303556799, a prime.

Crossrefs

Programs

  • PARI
    isok(k) = ispseudoprime(lcm(vector(k, i, i))-1); \\ Jinyuan Wang, May 02 2020

A076244 Distinct values arising in A051547, sequence of a(n) = lcm(phi(1), ..., phi(n)).

Original entry on oeis.org

1, 2, 4, 12, 60, 120, 240, 720, 7920, 55440, 1275120, 2550240, 33153120, 961440480, 2884321440, 118257179040, 236514358080, 1182571790400, 20103720436800, 1065497183150400, 39423395776564800, 118270187329694400
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Union@ FoldList[LCM @@ {#1, EulerPhi@ #2} &, Range@ 165] (* Michael De Vlieger, Dec 09 2018 *)
  • PARI
    lista(nn) = {last = -1; for (n=1, nn, new = lcm(vector(n, k, eulerphi(k))); if (new != last, print1(new, ", "); last = new););} \\ Michel Marcus, Mar 18 2018

A076245 Positions of records in A051547.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 29, 47, 51, 53, 59, 81, 83, 85, 101, 103, 107, 149, 163, 167, 173, 179, 191, 197, 227, 251, 255, 257, 263, 269, 283, 293, 311, 317, 347, 359, 367, 383, 389, 467, 479, 487, 503, 509, 557, 563, 569, 587, 607, 619, 643, 653, 677
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Comments

Observe that both primes and composites (including 15, 51, 81, 85, and 255) occur.
In totients of consecutive terms some prime-factor appears at higher power than in preceding ones: see A076246 and A051451.

Crossrefs

Programs

  • Mathematica
    With[{s = FoldList[LCM @@ {#1, EulerPhi@ #2} &, Range[700]]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Dec 09 2018 *)
  • PARI
    lista(nn) = {least = 1; print1(1, ", "); for (n=2, nn, nleast = lcm(least, eulerphi(n)); if (nleast > least, print1(n, ", ")); least = nleast;);} \\ Michel Marcus, Jul 30 2017

A208768 The distinct values of A070198.

Original entry on oeis.org

0, 1, 5, 11, 59, 419, 839, 2519, 27719, 360359, 720719, 12252239, 232792559, 5354228879, 26771144399, 80313433199, 2329089562799, 72201776446799, 144403552893599, 5342931457063199, 219060189739591199, 9419588158802421599, 442720643463713815199
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 01 2012

Keywords

Comments

The terms of A070198, and duplicates removed.
a(n) = A051451(n) - 1 = A051452(n) - 2.
From Daniel Forgues, Apr 27 2014: (Start)
Factorizations:
5, 11, 59, 419, 839 are primes;
2519 = 11*229, 27719 = 53*523, 360359 = 173*2083,
720719 = 31*67*347, 12252239 = 29*647*653;
232792559, 5354228879 are primes;
26771144399 = 47*12907*44131, 80313433199 = 29*61*45400471;
2329089562799 is prime;
72201776446799 = 37*149*239*1091*50227;
144403552893599 is prime;
Very likely contains an infinite number of primes (see A057824). (End)
A more natural (compare with A051452) name for the sequence: lcm(1, ..., k) - 1, where k is the n-th prime power A000961(n). - Daniel Forgues, May 09 2014

Programs

  • Haskell
    import Data.List (nub)
    a208768 n = a208768_list !! (n-1)
    a208768_list = nub a070198_list
    
  • Python
    from math import prod
    from sympy import primepi, integer_nthroot, integer_log, primerange
    def A208768(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod(p**integer_log(m, p)[0] for p in primerange(m+1))-1 # Chai Wah Wu, Aug 15 2024

A305325 Irregular triangle read by rows T(n, k), n >= 1 and 1 <= k <= A305215(n): T(n, k) is the k-th positive number with largest prime power factor equal to A000961(n).

Original entry on oeis.org

1, 2, 3, 6, 4, 12, 5, 10, 15, 20, 30, 60, 7, 14, 21, 28, 35, 42, 70, 84, 105, 140, 210, 420, 8, 24, 40, 56, 120, 168, 280, 840, 9, 18, 36, 45, 63, 72, 90, 126, 180, 252, 315, 360, 504, 630, 1260, 2520, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 132, 154, 165
Offset: 1

Views

Author

Rémy Sigrist, May 30 2018

Keywords

Comments

The largest prime power factor of a number n is given by A034699(n).
When interpreted as a flat sequence we obtain a permutation of the natural numbers.

Examples

			Triangle begins:
  1: [1]
  2: [2]
  3: [3, 6]
  4: [4, 12]
  5: [5, 10, 15, 20, 30, 60]
  6: [7, 14, 21, 28, 35, 42, 70, 84, 105, 140, 210, 420]
  7: [8, 24, 40, 56, 120, 168, 280, 840]
  8: [9, 18, 36, 45, 63, 72, 90, 126, 180, 252, 315, 360, 504, 630, 1260, 2520]
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

T(n, 1) = A000961(n).
T(n, A305215(n)) = A051451(n).

A025543 Least common multiple of the first n composite numbers.

Original entry on oeis.org

1, 4, 12, 24, 72, 360, 360, 2520, 2520, 5040, 5040, 5040, 5040, 55440, 55440, 277200, 3603600, 10810800, 10810800, 10810800, 21621600, 21621600, 367567200, 367567200, 367567200, 6983776800, 6983776800, 6983776800, 6983776800, 6983776800
Offset: 0

Views

Author

Keywords

Crossrefs

Differs from A003418 and A051451
Cf. A036691.

Programs

  • Haskell
    a025543 n = a025543_list !! n
    a025543_list = scanl lcm 1 a002808_list
    -- Reinhard Zumkeller, Nov 10 2013
  • Mathematica
    Table[Apply[LCM, Take[Select[Range[2, 300], !PrimeQ[#] &], n]], {n, 1, 100}]  (* Clark Kimberling, Nov 12 2016 *)

A305215 a(n) is the number of numbers whose largest prime power factor equals A000961(n).

Original entry on oeis.org

1, 1, 2, 2, 6, 12, 8, 16, 48, 96, 48, 240, 480, 960, 960, 960, 3840, 7680, 3072, 18432, 36864, 73728, 147456, 147456, 442368, 884736, 1769472, 589824, 4128768, 8257536, 16515072, 33030144, 16515072, 82575360, 165150720, 330301440, 660602880, 1321205760
Offset: 1

Views

Author

Rémy Sigrist, May 27 2018

Keywords

Comments

The largest prime power factor of a number n is given by A034699(n).

Examples

			The first terms, alongside A000961(n) and the set of numbers k such that A034699(k) = A000961(n), are:
  n   a(n)  A000961(n)    S(n)
  --  ----  ----------    ----
   1     1           1    { 1 }
   2     1           2    { 2 }
   3     2           3    { 3, 6 }
   4     2           4    { 4, 12 }
   5     6           5    { 5, 10, 15, 20, 30, 60 }
   6    12           7    { 7, 14, 21, 28, 35, 42, 70, 84, 105, 140, 210, 420 }
   7     8           8    { 8, 24, 40, 56, 120, 168, 280, 840 }
		

Crossrefs

First differences of A056795.
Row lengths of A305325.

Programs

  • PARI
    my(l=1); for (k=1, 103, if (omega(k) <= 1, l = lcm(l, k); print1 (numdiv(l/k) ", ")))

Formula

a(n) = A000005(A051451(n) / A000961(n)).

A308471 Lowest outliers for A057660.

Original entry on oeis.org

1, 4, 6, 12, 24, 30, 60, 120, 180, 210, 360, 420, 840, 1260, 2520, 4620, 9240, 13860, 27720, 55440, 60060, 120120, 180180, 360360, 720720, 1441440, 1801800, 2042040, 3063060, 6126120, 12252240, 24504480, 30630600, 36756720, 38798760
Offset: 1

Views

Author

Charlie Neder, May 29 2019

Keywords

Comments

A057660(n) is a multiplicative function bounded above by n*(n-1)+1, which is reached whenever n is 1 or prime. These numbers are the n such that the ratio between A057660(n) and the upper bound reaches a record low.
Motivated by Daniel Forgues's conjecture that this sequence consists of 4 and A051451.
A subsequence of A025487.

Examples

			A057660(60060)/(60060*60059+1) = 1211716737/3607143541 ~ 0.3359214, and every number less than 60060 has a ratio > 0.34, so 60060 is in this sequence.
		

Crossrefs

A354418 a(n) is the denominator of the sum of the reciprocals of the first n squarefree numbers.

Original entry on oeis.org

1, 2, 6, 30, 5, 35, 70, 770, 10010, 5005, 15015, 255255, 4849845, 1616615, 3233230, 74364290, 37182145, 1078282205, 6469693230, 200560490130, 6077590610, 3038795305, 607759061, 22487085257, 44974170514, 134922511542, 5531822973222, 921970495537, 39644731308091
Offset: 1

Views

Author

Ilya Gutkovskiy, May 26 2022

Keywords

Examples

			1, 3/2, 11/6, 61/30, 11/5, 82/35, 171/70, 1951/770, 26133/10010, 13424/5005, 41273/15015, ...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[1/Select[Range[43], SquareFreeQ]] // Denominator
  • PARI
    a(n) = my(i=0, s=0); for(x=1, oo, if(core(x)==x, s+=1/x; i++; if(i==n, return(denominator(s))))) \\ Felix Fröhlich, May 26 2022

A056795 Number of divisors of k as k runs through sequence of distinct values of LCM(1,..,n).

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 32, 48, 96, 192, 240, 480, 960, 1920, 2880, 3840, 7680, 15360, 18432, 36864, 73728, 147456, 294912, 442368, 884736, 1769472, 3538944, 4128768, 8257536, 16515072, 33030144, 66060288, 82575360, 165150720, 330301440
Offset: 1

Views

Author

Labos Elemer, Aug 28 2000

Keywords

Comments

Values of LCM's in A003418 and accordingly their number of divisors jump at powers of primes (A000961). Here divisor-numbers of LCM's are displayed without repetition.

Examples

			For x = 19,20,21,22 the value of A003418(x) = A051451(13) = LCM(1,..,x) = 232792560, of which the total number of divisors is 960, so a(13) = 960.
		

Crossrefs

Partial sums of A305215.

Programs

  • PARI
    f(n) = lcm(vector(n, i, i)); \\ A003418
    lista(nn) = {my(last = 0); for (n=1, nn, my(new = f(n)); if (new != last, print1(numdiv(new), ", "); last = new););} \\ Michel Marcus, Oct 08 2020

Formula

a(n) = A000005(A051451(n)).
Previous Showing 31-40 of 64 results. Next