Original entry on oeis.org
1, 6, 6, 20, 15, 42, 28, 72, 45, 110, 66, 156, 91, 210, 120, 272, 153, 342, 190, 420, 231, 506, 276, 600, 325, 702, 378, 812, 435, 930, 496, 1056, 561, 1190, 630, 1332, 703, 1482, 780, 1640, 861, 1806, 946, 1980, 1035, 2162, 1128, 2352, 1225, 2550, 1326, 2756, 1431
Offset: 0
-
import Data.Ratio ((%), denominator)
a045896 n = denominator $ n % ((n + 1) * (n + 2))
-- Reinhard Zumkeller, Dec 12 2011
-
seq((n+1)*(n+2)*(3-(-1)^n)/4, n=0..20); # C. Ronaldo
with(combinat): seq(lcm(n+1,binomial(n+2,n)), n=0..50); # Zerinvary Lajos, Apr 20 2008
-
Table[LCM[2*n + 2, n + 2]/2, {n, 0, 40}] (* corrected by Amiram Eldar, Sep 14 2022 *)
Denominator[#[[1]]/(#[[2]]#[[3]])&/@Partition[Range[0,60],3,1]] (* Harvey P. Dale, Aug 15 2013 *)
-
Vec((2*x^3+3*x^2+6*x+1)/(1-x^2)^3+O(x^99)) \\ Charles R Greathouse IV, Mar 23 2016
A085738
Denominators in triangle formed from Bernoulli numbers.
Original entry on oeis.org
1, 2, 2, 6, 3, 6, 1, 6, 6, 1, 30, 30, 15, 30, 30, 1, 30, 15, 15, 30, 1, 42, 42, 105, 105, 105, 42, 42, 1, 42, 21, 105, 105, 21, 42, 1, 30, 30, 105, 105, 105, 105, 105, 30, 30, 1, 30, 15, 105, 105, 105, 105, 15, 30, 1, 66, 66, 165, 165, 1155, 231, 1155, 165, 165, 66, 66
Offset: 0
Triangle begins
1
1/2, 1/2
1/6, 1/3, 1/6
0, 1/6, 1/6, 0
-1/30, 1/30, 2/15, 1/30, -1/30
0, -1/30, 1/15, 1/15, -1/30, 0
1/42, -1/42, -1/105, 8/105, -1/105, -1/42, 1/42
0, 1/42, -1/21, 4/105, 4/105, -1/21, 1/42, 0
-1/30, 1/30, -1/105, -4/105, 8/105, -4/105, -1/105, 1/30, -1/30
- Fabien Lange and Michel Grabisch, The interaction transform for functions on lattices Discrete Math. 309 (2009), no. 12, 4037-4048. [From _N. J. A. Sloane_, Nov 26 2011]
- Peter Luschny, The computation and asymptotics of the Bernoulli numbers.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [_Peter Luschny_, May 04 2012]
See
A051714/
A051715 for another triangle that generates the Bernoulli numbers.
-
t[n_, 0] := (-1)^n BernoulliB[n];
t[n_, k_] := t[n, k] = t[n-1, k-1] - t[n, k-1];
Table[t[n, k] // Denominator, {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 04 2019 *)
-
# uses[BernoulliDifferenceTable from A085737]
def A085738_list(n): return [q.denominator() for q in BernoulliDifferenceTable(n)]
A085738_list(6)
# Peter Luschny, May 04 2012
A085737
Numerators in triangle formed from Bernoulli numbers.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 0, 1, 1, 0, -1, 1, 2, 1, -1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 8, -1, -1, 1, 0, 1, -1, 4, 4, -1, 1, 0, -1, 1, -1, -4, 8, -4, -1, 1, -1, 0, -1, 1, -8, 4, 4, -8, 1, -1, 0, 5, -5, 7, 4, -116, 32, -116, 4, 7, -5, 5, 0, 5, -5, 32, -28, 16, 16, -28, 32, -5, 5, 0
Offset: 0
Triangle of fractions begins
1;
1/2, 1/2;
1/6, 1/3, 1/6;
0, 1/6, 1/6, 0;
-1/30, 1/30, 2/15, 1/30, -1/30;
0, -1/30, 1/15, 1/15, -1/30, 0;
1/42, -1/42, -1/105, 8/105, -1/105, -1/42, 1/42;
0, 1/42, -1/21, 4/105, 4/105, -1/21, 1/42, 0;
-1/30, 1/30, -1/105, -4/105, 8/105, -4/105, -1/105, 1/30, -1/30;
- Fabien Lange and Michel Grabisch, The interaction transform for functions on lattices Discrete Math. 309 (2009), no. 12, 4037-4048. [From _N. J. A. Sloane_, Nov 26 2011]
- Peter Luschny, The computation and asymptotics of the Bernoulli numbers.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [_Peter Luschny_, May 04 2012]
-
nmax:=11; for n from 0 to nmax do T(n, 0):= (-1)^n*bernoulli(n) od: for n from 1 to nmax do for k from 1 to n do T(n, k) := T(n-1, k-1) - T(n, k-1) od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od: seq(seq(numer(T(n, k)), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 29 2011, revised Nov 25 2012
-
t[n_, 0] := (-1)^n*BernoulliB[n]; t[n_, k_] := t[n, k] = t[n-1, k-1] - t[n, k-1]; Table[t[n, k] // Numerator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014 *)
-
def BernoulliDifferenceTable(n) :
def T(S, a) :
R = [a]
for s in S :
a -= s
R.append(a)
return R
def M(A, p) :
R = T(A,0)
S = add(r for r in R)
return -S / (2*p+3)
R = [1/1]
A = [1/2,-1/2]; R.extend(A)
for k in (0..n-2) :
A = T(A,M(A,k)); R.extend(A)
A = T(A,0); R.extend(A)
return R
def A085737_list(n) : return [numerator(q) for q in BernoulliDifferenceTable(n)]
# Peter Luschny, May 04 2012
A191302
Denominators in triangle that leads to the Bernoulli numbers.
Original entry on oeis.org
1, 2, 2, 3, 2, 2, 2, 3, 15, 2, 6, 3, 2, 1, 5, 105, 2, 6, 15, 15, 2, 3, 3, 105, 105, 2, 2, 5, 7, 35, 2, 3, 3, 21, 21, 231, 2, 6, 15, 15, 21, 21, 2, 1, 5, 15, 1, 77, 15015, 2, 6, 3, 35, 15, 33, 1155
Offset: 0
The first few rows of the array ASPEC array:
2, 1, 1, 1, 1, 1, 1,
2, 3, 4, 5, 6, 7, 8,
2, 5, 9, 14, 20, 27, 35,
2, 7, 16, 30, 50, 77, 112,
2, 9, 25, 55, 105, 182, 294,
The first few T(n,n+1) = T(n,n)/2 coefficients:
1/2, -1/6, 1/15, -4/105, 4/105, -16/231, 3056/15015, ...
The first few rows of the SBD array:
1/2, 0, 0, 0
1/2, 0, 0, 0
1/2, -1/6, 0, 0
1/2, -1/6, 0, 0
1/2, -1/6, 1/15, 0
1/2, -1/6, 1/15, 0
1/2, -1/6, 1/15, -4/105
1/2, -1/6, 1/15, -4/105
The first few rows of the BSPEC triangle:
B(0) = 1 = 1/1
B(1) = 1/2 = 1/2
B(2) = 1/6 = 1/2 - 1/3
B(3) = 0 = 1/2 - 1/2
B(4) = -1/30 = 1/2 - 2/3 + 2/15
B(5) = 0 = 1/2 - 5/6 + 1/3
B(6) = 1/42 = 1/2 - 1/1 + 3/5 - 8/105
B(7) = 0 = 1/2 - 7/6 + 14/15 - 4/15
-
nmax:=13: mmax:=nmax:
A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end:
A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end:
for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od:
for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):=T(n-1,m+1)-T(n-1,m) od: od:
seq(T(n,n+1),n=0..nmax):
for n from 0 to nmax do ASPEC(n,0):=2: for m from 1 to mmax do ASPEC(n,m):= (2*n+m)*binomial(n+m-1,m-1)/m od: od:
for n from 0 to nmax do seq(ASPEC(n,m),m=0..mmax) od:
for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n,m):=0 od: od:
for m from 0 to mmax do for n from 2*m to nmax do SBD(n,m):= T(m,m+1) od: od:
for n from 0 to nmax do seq(SBD(n,m), m= 0..mmax/2) od:
for n from 0 to nmax do BSPEC(n,2) := SBD(n,2)*ASPEC(2,n-4) od:
for m from 0 to mmax do for n from 0 to nmax do BSPEC(n,m) := SBD(n,m)*ASPEC(m,n-2*m) od: od:
for n from 0 to nmax do seq(BSPEC(n,m), m=0..mmax/2) od:
seq(add(BSPEC(n, k), k=0..floor(n/2)) ,n=0..nmax):
Tx:=0:
for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= denom(BSPEC(n,m)): Tx:=Tx+1: od: od:
seq(a(n),n=0..Tx-1); # Johannes W. Meijer, Jul 02 2011
-
(* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Denominator (* Jean-François Alcover_, Aug 09 2012 *)
A051712
Numerator of b(n)-b(n+1), where b(n) = n/((n+1)(n+2)) = A026741/A045896.
Original entry on oeis.org
0, 1, 1, 1, 1, 5, 1, 7, 1, 3, 5, 11, 1, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 1, 25, 13, 9, 7, 29, 5, 31, 4, 11, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 2, 49, 25, 17, 13, 53, 9, 55, 7, 19, 29, 59, 5, 61, 31, 21, 8, 65, 11, 67, 17, 23, 35, 71, 3, 73
Offset: 1
0, 1/60, 1/60, 1/70, 1/84, 5/504, 1/120, 7/990, 1/165, 3/572,...
-
b[n_] := n/((n + 1) (n + 2)); Numerator[-Differences[Array[b, 100]]]
(* or *)
f[p_, e_] := p^e; f[2, e_] := If[e < 3, 1, 2^(e - 3)]; f[3, e_] := 3^(e - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n - 1]; Array[a, 100] (* Amiram Eldar, Nov 20 2022 *)
A051713
Denominator of b(n)-b(n+1), where b(n) = n/((n+1)(n+2)) = A026741/A045896.
Original entry on oeis.org
1, 60, 60, 70, 84, 504, 120, 990, 165, 572, 1092, 2730, 280, 4080, 2448, 1938, 855, 7980, 1540, 10626, 3036, 4600, 7800, 17550, 819, 21924, 12180, 8990, 7440, 32736, 5984, 39270, 5355, 15540, 25308, 54834, 4940, 63960, 34440
Offset: 1
0, 1/60, 1/60, 1/70, 1/84, 5/504, 1/120, 7/990, 1/165, 3/572,...
-
Denominator[#[[1]]-#[[2]]&/@(Partition[#[[1]]/(#[[2]]#[[3]])&/@Partition[ Range[50],3,1],2,1])] (* Harvey P. Dale, Nov 15 2014 *)
A193220
Denominators of the fourth row of Akiyama-Tanigawa algorithm leading to Bernoulli numbers A164555(n)/A027642(n).
Original entry on oeis.org
1, 30, 20, 35, 84, 84, 120, 495, 55, 286, 1092, 455, 280, 2040, 816, 969, 855, 1330, 1540, 5313, 1012, 2300, 7800, 2925, 819, 10962, 4060, 4495, 7440, 5456, 5984, 19635, 1785, 7770, 25308, 9139, 4940
Offset: 0
The third row is 0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495, 3/55, 15/286, 55/1092, 22/455, 13/280, ...
-
read("transforms3");
L := [seq(1/n,n=1..40)] ;
L1 := AKIYATANI(L) ; L2 := AKIYATANI(L1) ; L3 := AKIYATANI(L2) ;
apply(denom,%) ; # R. J. Mathar, Aug 20 2011
-
a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)*(a[n-1, k] - a[n-1, k+1]); Table[a[3, k], {k, 0, 36}] // Denominator (* Jean-François Alcover, Sep 18 2012 *)
A100652
Denominator of 1 - Sum_{i=1..n} |Bernoulli(i)|.
Original entry on oeis.org
1, 2, 3, 3, 10, 10, 105, 105, 70, 70, 1155, 1155, 1430, 1430, 2145, 2145, 24310, 24310, 4849845, 4849845, 58786, 58786, 2028117, 2028117, 965770, 965770, 1448655, 1448655, 28007330, 28007330, 100280245065, 100280245065, 66853496710, 66853496710, 100280245065
Offset: 1
1, 1/2, 1/3, 1/3, 3/10, 3/10, 29/105, 29/105, 17/70, 17/70, 193/1155, 193/1155, -123/1430, -123/1430, -2687/2145, -2687/2145, -202863/24310, -202863/24310, -307072861/4849845, ... = A100651/A100652.
A362991
Triangle read by rows. T(n, k) = lcm{1, 2, ..., n+1} * Sum_{j=0..n-k} (-1)^(n-k-j) * j! * Stirling2(n - k, j) / (j + k + 1).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 0, 2, 3, 3, -2, 2, 9, 12, 12, 0, -2, 3, 8, 10, 10, 10, -10, -9, 24, 50, 60, 60, 0, 20, -30, -8, 50, 90, 105, 105, -84, 84, 18, -96, 0, 150, 245, 280, 280, 0, -84, 126, -24, -90, 18, 147, 224, 252, 252, 2100, -2100, 126, 1344, -600, -870, 343, 1568, 2268, 2520, 2520
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 2;
[3] 0, 2, 3, 3;
[4] -2, 2, 9, 12, 12;
[5] 0, -2, 3, 8, 10, 10;
[6] 10, -10, -9, 24, 50, 60, 60;
[7] 0, 20, -30, -8, 50, 90, 105, 105;
[8] -84, 84, 18, -96, 0, 150, 245, 280, 280;
[9] 0, -84, 126, -24, -90, 18, 147, 224, 252, 252;
- Paolo Xausa, Table of n, a(n) for n = 0..11324 (rows 0..150 of the triangle, flattened)
- M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
- D. Merlini, R. Sprugnoli, and M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05.
- Index entries for sequences related to Bernoulli numbers.
-
LCM := n -> ilcm(seq((1 + i), i = 0..n)):
T := (n, k) -> LCM(n)*add((-1)^(n - k - j)*j!*Stirling2(n - k, j)/(j + k + 1), j = 0..n - k):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
-
A362991row[n_]:=Table[LCM@@Range[n+1]Sum[(-1)^(n-k-j)j!StirlingS2[n-k,j]/(j+k+1),{j,0,n-k}],{k,0,n}];Array[A362991row,15,0] (* Paolo Xausa, Aug 09 2023 *)
-
def A362991Triangle(size): # 'size' is the number of rows.
A, T, l = [], [], 1
for n in range(size):
A.append(Rational(1/(n + 1)))
for j in range(n, 0, -1):
A[j - 1] = j * (A[j - 1] - A[j])
l = lcm(l, n + 1)
T.append([a * l for a in A])
return T
A362991Triangle(10)
A182397
Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642.
Original entry on oeis.org
1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241
Offset: 0
Comments