cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A318585 Number of integer partitions of n whose sum of reciprocals squared is an integer.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 12, 12, 13, 14, 16, 16, 18, 19, 21, 23, 26, 27, 29, 30, 34, 35, 39, 43, 48, 51, 55, 57, 63, 67, 74, 78, 84, 89, 99, 103, 112, 119, 132, 139, 148, 156, 170, 182, 199
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

From David A. Corneth, Sep 03 2018: (Start)
Let a valid tuple be a tuple of positive integers whose sum of reciprocals squared is an integer. Initially one only needs to consider tuples of positive integers where each element is > 1. After that some ones could be prepended to a valid tuple to find new valid tuples.
One could define a prime tuple as a valid tuple where no proper part with elements is a valid tuple. So (1) would be a prime tuple as no proper part of (1) has elements and is a valid tuple. Other examples of prime tuples are (2, 2, 2, 2) and (2, 2, 2, 3, 3, 6).
The list of distinct elements in a tuple could be whittled down by finding for each positive integer m the least sum of a prime tuple in which that integer is. For each m, that sum is at most m^3. (End)

Examples

			The a(26) = 7 integer partitions:
  (6332222222)
  (44442221111)
  (63322211111111)
  (22222222222211)
  (222222221111111111)
  (2222111111111111111111)
  (11111111111111111111111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[#^(-2)]]&]],{n,30}]

Extensions

a(61)-a(70) from Giovanni Resta, Sep 03 2018

A318586 Number of integer partitions of n whose sum of reciprocals squared is the reciprocal of an integer.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 2, 3, 3, 1, 4, 1, 3, 1, 2, 1, 5, 2, 1, 4, 5, 1, 5, 1, 6, 3, 2, 4, 8, 2, 4, 2, 6, 3, 9, 2, 4, 7, 5, 4, 11, 8, 7, 8, 9, 5, 12, 5, 16, 5, 10, 5, 25, 10, 9, 13, 18, 12, 18, 6, 11, 14, 22, 9, 24, 11, 21, 22, 25, 24, 23, 28, 32
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Examples

			The a(42) = 9 integer partitions:
  (42)
  (21,14,7)
  (18,9,9,6)
  (18,9,9,3,3)
  (20,10,4,4,4)
  (12,12,12,4,2)
  (10,5,5,5,5,5,5,2)
  (12,6,6,4,4,4,2,2,2)
  (6,6,4,4,4,4,3,3,3,3,2)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Total[#^(-2)]]&]],{n,30}]

Extensions

a(61)-a(80) from Giovanni Resta, Sep 03 2018

A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A318573 Numerator of the reciprocal sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 5, 1, 5, 5, 4, 1, 2, 1, 7, 3, 6, 1, 7, 2, 7, 3, 9, 1, 11, 1, 5, 7, 8, 7, 3, 1, 9, 2, 10, 1, 7, 1, 11, 4, 10, 1, 9, 1, 5, 9, 13, 1, 5, 8, 13, 5, 11, 1, 17, 1, 12, 5, 6, 1, 17, 1, 15, 11, 19, 1, 4, 1, 13, 7, 17, 9, 5, 1, 13, 2, 14, 1, 11, 10, 15, 3, 16, 1, 7, 5, 19, 13, 16, 11, 11, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Table[Sum[pr[[2]]/PrimePi[pr[[1]]],{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]//Numerator
  • PARI
    A318573(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/primepi(f[i, 1]))); }; \\ Antti Karttunen, Nov 17 2019

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the numerator of Sum y_i/x_i.

Extensions

More terms from Antti Karttunen, Nov 17 2019

A318584 Number of integer partitions of n whose sum of reciprocals squared is 1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 0, 0, 2, 0, 2, 1, 2, 2, 2, 1, 1, 2, 3, 0, 1, 1, 6, 2, 3, 2, 6, 2, 2, 3, 2, 6, 7, 2, 4, 3, 9, 4, 7, 5, 8, 8, 7, 9, 9, 11, 12, 7, 9, 11, 17, 9, 13, 12, 17, 16, 13, 15, 20, 26, 27, 18, 23
Offset: 0

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The a(16) = 1 integer partition:
(6,3,3,2,2,2)
The a(48) = 2 integer partitions:
(18,9,9,3,3,2,2,2)
(6,6,6,6,3,3,3,3,3,3,3,3)
The a(56) = 3 integer partitions:
(12,6,6,4,4,4,4,4,4,4,2,2)
(10,6,5,5,5,5,5,5,3,3,2,2)
(6,6,4,4,4,4,4,4,4,4,3,3,3,3)
The a(60) = 6 integer partitions:
(12,12,12,12,3,3,2,2,2)
(8,8,8,8,6,4,4,4,3,3,2,2)
(6,6,6,6,6,6,6,6,6,2,2,2)
(12,12,12,4,3,3,3,3,3,3,2)
(10,5,5,5,5,5,5,4,4,4,4,2,2)
(6,4,4,4,4,4,4,4,4,4,4,4,4,3,3)

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[#^(-2)]==1&]],{n,30}]

Extensions

a(61)-a(100) from Alois P. Heinz, Aug 30 2018

A318587 Heinz numbers of integer partitions whose sum of reciprocals squared is 1.

Original entry on oeis.org

2, 81, 8775, 64827, 950625, 1953125, 7022925, 9055935, 21781575, 36020025, 50124555, 51883209, 57909033, 102984375, 118978125, 760816875, 816747435, 981059625, 1206902781, 1265058675, 1387132263, 2359670625, 3902169375, 4868424351, 5222768733, 5430160125
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of integer partitions with Heinz numbers in this sequence begins: (1), (2222), (633222), (4444222), (66333322).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000],Total[If[#==1,{},Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]^2]]]==1&]

Extensions

a(6)-a(26) from Alois P. Heinz, Aug 30 2018

A318589 Heinz numbers of integer partitions whose sum of reciprocals squared is the reciprocal of an integer.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1000],IntegerQ[1/Total[If[#==1,{},Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]^2]]]]&]

A325624 a(n) = prime(n)^(n!).

Original entry on oeis.org

2, 9, 15625, 191581231380566414401, 92709068817830061978520606494193845859707401497097037749844778027824097442147966967457359038488841338006006032592594389655201
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A subsequence of A325619 (numbers whose prime indices have reciprocal factorial sum equal to 1).

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325619.

Programs

  • Mathematica
    Table[Prime[n]^n!,{n,5}]

A051907 Number of ways to express 1 as the sum of distinct unit fractions such that the sum of the denominators is n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 0, 4, 1, 3, 4, 0, 2, 0, 6, 0, 1, 2, 1, 3, 0, 4, 2, 1, 5, 5, 3, 2, 3, 3, 5, 5, 5, 2, 1, 12, 5, 4, 11, 4, 5, 2, 11, 3, 5
Offset: 1

Views

Author

Jud McCranie, Dec 16 1999

Keywords

Examples

			1 = 1/2+1/4+1/9+1/12+1/18 = 1/2+1/5+1/6+1/12+1/20. The sum of the denominators of each of these is 45, these are the only 2 with sum of denominators = 45, so a(45)=2.
		

Crossrefs

A051882 lists n such that a(n)=0.
Cf. A051908.

Extensions

R. L. Graham showed that a(n)>0 for n>77.

A318574 Denominator of the reciprocal sum of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 1, 3, 5, 2, 6, 4, 6, 1, 7, 1, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 6, 11, 1, 10, 7, 12, 1, 12, 8, 3, 3, 13, 4, 14, 5, 3, 9, 15, 2, 2, 3, 14, 6, 16, 2, 15, 4, 8, 10, 17, 6, 18, 11, 4, 1, 2, 10, 19, 7, 18, 12, 20, 1, 21, 12, 6, 8, 20, 3, 22
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Table[Sum[pr[[2]]/PrimePi[pr[[1]]],{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]//Denominator

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the denominator of Sum y_i/x_i.
Previous Showing 11-20 of 43 results. Next