cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A052446 Number of unlabeled simple connected bridged graphs on n nodes.

Original entry on oeis.org

0, 1, 1, 3, 10, 52, 351, 3714, 63638, 1912203, 103882478, 10338614868, 1892863194064, 639799762452639, 400857034314325045, 467526363203064793081, 1019286659457016864347582, 4170114225096278323394128049, 32130213534058019378134295287305
Offset: 1

Views

Author

Eric W. Weisstein, May 08 2000

Keywords

Comments

These are unlabeled connected graphs with spanning edge-connectivity 1, where the spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph. - Gus Wiseman, Sep 02 2019

Crossrefs

Cf. other k-edge-connected unlabeled graph sequences A052446, A052447, A052448, A241703, A241704, A241705.
Cf. A001349 (number of simple connected graphs).
Cf. A007146 (number of simple connected bridgeless graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
Column k = 1 of A263296.
Row sums of A327077 if the first column is removed.
BII-numbers of set-systems with spanning edge-connectivity 1 are A327111.
The labeled version is A327071.

Programs

Formula

a(n) = A001349(n) - A007146(n).

Extensions

a(8) and a(9) and better description by Eric W. Weisstein, Nov 07 2010
a(10) from the Encyclopedia of Finite Graphs by Travis Hoppe and Anna Petrone, Apr 22 2014
Additional terms from A001349 and A007146 by Eric W. Weisstein, Oct 29 2015
a(18)-a(22) from A001349 and A007146 by Jean-François Alcover, Nov 09 2019

A263296 Triangle read by rows: T(n,k) is the number of graphs with n vertices with edge connectivity k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 10, 8, 2, 1, 44, 52, 41, 15, 3, 1, 191, 351, 352, 121, 25, 3, 1, 1229, 3714, 4820, 2159, 378, 41, 4, 1, 13588, 63638, 113256, 68715, 14306, 1095, 65, 4, 1, 288597, 1912203, 4602039, 3952378, 1141575, 104829, 3441, 100, 5, 1
Offset: 1

Views

Author

Christian Stump, Oct 13 2015

Keywords

Comments

This is spanning edge-connectivity. The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. The non-spanning edge-connectivity of a graph (A327236) is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty. Compare to vertex-connectivity (A259862). - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
     1;
     1,    1;
     2,    1,    1;
     5,    3,    2,    1;
    13,   10,    8,    2,   1;
    44,   52,   41,   15,   3,  1;
   191,  351,  352,  121,  25,  3, 1;
  1229, 3714, 4820, 2159, 378, 41, 4, 1;
  ...
		

Crossrefs

Row sums give A000088, n >= 1.
Number of graphs with edge connectivity at least k for k=1..10 are A001349, A007146, A324226, A324227, A324228, A324229, A324230, A324231, A324232, A324233.
The labeled version is A327069.

Extensions

a(22)-a(55) added by Andrew Howroyd, Aug 11 2019

A052448 Number of simple unlabeled n-node graphs of edge-connectivity 3.

Original entry on oeis.org

0, 0, 0, 1, 2, 15, 121, 2159, 68715, 3952378, 389968005, 65161587084
Offset: 1

Views

Author

Eric W. Weisstein, May 08 2000

Keywords

Crossrefs

Column k=3 of A263296.
Cf. other edge-connectivity unlabeled graph sequences A052446, A052447, A241703, A241704, A241705.

Extensions

a(8), a(9), a(10) from the Encyclopedia of Finite Graphs by Travis Hoppe and Anna Petrone, Apr 22 2014
a(11) by Jens M. Schmidt, Feb 18 2019
a(12) from Jens M. Schmidt's web page, Jan 10 2021

A241703 Number of simple unlabeled n-node graphs of edge-connectivity 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 25, 378, 14306, 1141575, 164245876, 39637942895
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 27 2014

Keywords

Crossrefs

Column k=4 of A263296.
Cf. other edge-connectivity unlabeled graph sequences A052446, A052447, A052448, A241704, A241705.

Extensions

a(11) by Jens M. Schmidt, Feb 18 2019
a(12) from Jens M. Schmidt's web page, Jan 10 2021

A241704 Number of simple unlabeled n-node graphs of edge-connectivity 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 41, 1095, 104829, 21981199, 8077770931
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 27 2014

Keywords

Crossrefs

Column k=5 of A263296.
Cf. other edge-connectivity unlabeled graph sequences A052446, A052447, A052448, A241703, A241705.

Extensions

a(11)-a(12) by Jens M. Schmidt, Feb 18 2019

A241705 Number of simple unlabeled n-node graphs of edge-connectivity 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 65, 3441, 857365, 487560158, 466534106494
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 27 2014

Keywords

Crossrefs

Column k=6 of A263296.
Cf. other edge-connectivity unlabeled graph sequences A052446, A052447, A052448, A241703, A241704.

Extensions

a(11)-a(13) by Jens M. Schmidt, Feb 20 2019

A324227 Number of simple 4-edge-connected non-isomorphic n-vertex graphs.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 29, 424, 15471, 1249951, 187095386, 48211082866
Offset: 1

Views

Author

Jens M. Schmidt, Feb 18 2019

Keywords

Crossrefs

Extensions

a(12) added by Georg Grasegger, Jan 07 2025

A290011 Number of ways to connect n nodes with n+1 edges to form a 2-edge-connected graph.

Original entry on oeis.org

6, 85, 900, 9450, 104160, 1224720, 15422400, 207900000, 2993760000, 45924278400, 748280332800, 12913284384000, 235381386240000, 4520194398720000, 91233825306624000, 1931115968990208000, 42778526977105920000, 989887004576870400000, 23885015465274163200000
Offset: 4

Views

Author

Eugene Y. Q. Shen, Jul 17 2017

Keywords

Crossrefs

Programs

  • Maple
    seq((n^2 + 2 *n - 18)* n!/24, n=6..30); # Robert Israel, Jul 19 2017
  • Mathematica
    Table[(n - 4) (n!/8) + (n (n - 1)/2 - 3) (n!/12), {n, 4, 22}] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    a(n) = (n - 4)*(n!/8) + (n*(n - 1)/2 - 3)*(n!/12); \\ Michel Marcus, Jul 18 2017

Formula

a(n) = (n - 4)*(n!/8) + (n*(n - 1)/2 - 3)*(n!/12) = (n^2 + 2 n - 18)*(n!/24).
E.g.f.: x^4*(3*x^2+x-6)/(24*(x-1)^3). - Robert Israel, Jul 19 2017

A324096 Number of simple non-isomorphic n-vertex graphs of edge-connectivity 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 4, 100, 10790, 7772555, 12294282710
Offset: 1

Views

Author

Jens M. Schmidt, Feb 18 2019

Keywords

Crossrefs

Column k=7 of A263296.

A324097 Number of simple non-isomorphic n-vertex graphs of edge-connectivity 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 150, 36095, 77299066, 348666442245
Offset: 1

Views

Author

Jens M. Schmidt, Feb 18 2019

Keywords

Crossrefs

Column k=8 of A263296.
Showing 1-10 of 19 results. Next