cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A192404 G.f. satisfies: A(x,y) = 1 + Sum_{n>=1} x^n*y*A(x,y)^n/(1 - y*A(x,y)^(2*n)), where A(x,y) = 1 + Sum_{n>=1,k>=1} T(n,k)*x^n*y^k; here the coefficients T(n,k) form a square array and are read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 5, 1, 1, 7, 14, 10, 1, 1, 11, 31, 38, 17, 1, 1, 16, 61, 114, 91, 26, 1, 1, 22, 111, 291, 357, 196, 37, 1, 1, 29, 190, 656, 1131, 971, 384, 50, 1, 1, 37, 309, 1345, 3092, 3771, 2367, 694, 65, 1, 1, 46, 481, 2563, 7575, 12393, 11150, 5286, 1173, 82, 1
Offset: 1

Views

Author

Paul D. Hanna, Jun 30 2011

Keywords

Comments

Related q-series identity:
Sum_{n>=1} x^n*y*q^n/(1-y*q^(2*n)) = Sum_{n>=1} y^n*x*q^(2*n-1)/(1-x*q^(2*n-1)); here q=A(x,y).

Examples

			Let A = g.f. A(x,y), then A satisfies the following relations:
A = 1 + x*y*A/(1-y*A^2) + x^2*y*A^2/(1-y*A^4) + x^3*y*A^3/(1-y*A^6) +...
A = 1 + y*x*A/(1-x*A) + y^2*x*A^3/(1-x*A^3) + y^3*x*A^5/(1-x*A^5) +...
The square array of coefficients in A(x,y) begins:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...];
[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...];
[0,1,2,5,10,17,26,37,50,65,82,101,122,145,170,197,226,257,...];
[0,1,4,14,38,91,196,384,694,1173,1876,2866,4214,5999,8308,...];
[0,1,7,31,114,357,971,2367,5286,10969,21367,39391,69202,...];
[0,1,11,61,291,1131,3771,11150,29828,73329,167767,360791,...];
[0,1,16,111,656,3092,12393,43464,136434,390259,1031194,...];
[0,1,22,190,1345,7575,35839,146712,533050,1751371,5278494,...];
[0,1,29,309,2563,17011,93599,441925,1838094,6865479,...];
[0,1,37,481,4609,35563,224947,1212807,5721008,24088842,...];
[0,1,46,721,7906,70021,504448,3078603,16340045,77009425,...]; ...
in which the zeroth row and column are omitted from this sequence.
EXPLICIT EXPANSIONS of the generating function are as follows.
SUMMATION ALONG ROWS gives:
A(x,y) = 1 + x*y/(1-y) + x^2*(y - y^2 + 2*y^3)/(1-y)^3 + x^3*(y - y^2 + 4*y^3 - 2*y^4 + 6*y^5)/(1-y)^5 + x^4*(y + 3*y^3 + 9*y^4 + 5*y^6 + 22*y^7)/(1-y)^7 + x^5*(y + 2*y^2 - 2*y^3 + 54*y^4 - 90*y^5 + 204*y^6 - 133*y^7 + 98*y^8 + 90*y^9)/(1-y)^9 +...
in which the denominator polynomials are the odd powers of (1-y).
The coefficients of y in the above numerator polynomials begin:
[1];
[1,-1,2];
[1,-1,4,-2,6];
[1,0,3,9,0,5,22];
[1,2,-2,54,-90,204,-133,98,90];
[1,5,-10,150,-329,964,-1339,2025,-1385,868,394];
[1,9,-18,305,-667,2377,-3763,7967,-10012,14378,-10323,6388,1806];
[1,14,-21,518,-819,3536,-2367,6387,-1660,20583,-35708,77417,-64888,43361,8558];...
in which the row sums form A052701 (related to Catalan numbers), and the rightmost border forms the large Schroeder numbers (A006318).
SUMMATION ALONG COLUMNS gives:
A(x,y) = 1 + y*x/(1-x) + y^2*(x - x^2 + x^3)/(1-x)^3 + y^3*(x - x^3 + x^4 + x^5)/(1-x)^5 + y^4*(x + 3*x^2 - 11*x^3 + 23*x^4 - 24*x^5 + 12*x^6 + x^7)/(1-x)^7 + y^5*(x + 8*x^2 - 26*x^3 + 66*x^4 - 108*x^5 + 137*x^6 - 117*x^7 + 52*x^8 + x^9)/(1-x)^9 ...
in which the denominator polynomials are the odd powers of (1-x).
The coefficients of x in the above numerator polynomials begin:
[1];
[1,-1,1];
[1,0,-1,1,1];
[1,3,-11,23,-24,12,1];
[1,8,-26,66,-108,137,-117,52,1];
[1,15,-35,80,-90,95,-164,330,-377,186,1];
[1,24,-19,-25,464,-1516,3075,-4066,3274,-928,-778,625,1];
[1,35,49,-329,2023,-6479,15515,-28703,41895,-46744,36552,-15870,429,2054,1];...
in which the row sums form the Catalan numbers (A000108).
		

Crossrefs

Cf. A192405 (antidiagonal sums), A192406 (main diagonal), A192407.

Programs

  • PARI
    {T(n,k)=local(A=1+x*y);for(i=1,n+k,A=1+sum(m=1,n+k,x^m*y*A^m/(1-y*A^(2*m)+x*O(x^n)+y*O(y^k))));polcoeff(polcoeff(A,n,x),k,y)}
    
  • PARI
    {T(n,k)=local(A=1+x*y);for(i=1,n+k,A=1+sum(m=1,n+k,y^m*x*A^(2*m-1)/(1-x*A^(2*m-1)+x*O(x^n)+y*O(y^k))));polcoeff(polcoeff(A,k,y),n,x)}
    /* Print the coefficients as a square array: */
    {for(n=1,12,for(k=1,18-n,print1(T(n,k),","));print(""))}
    /* Print the array in flattened format: */
    {for(n=1,12,for(k=1,n,print1(T(n-k+1,k),","));)}

Formula

G.f. satisfies: A(x,y) = 1 + Sum_{n>=1} y^n*x*A(x,y)^(2*n-1)/(1 - x*A(x,y)^(2*n-1)).

A234939 Coefficients of Hilbert series for suboperad of bicolored noncrossing configurations generated by a triangle with colored base and at least one more colored edge and a triangle with one colored non-base edge.

Original entry on oeis.org

1, 2, 8, 38, 200, 1124, 6608, 40142, 249992, 1587548, 10241264, 66926204, 442120016, 2947660616, 19808372384, 134030802782, 912385334792, 6244056445868, 42935538999728, 296493196682036, 2055313327353200, 14297177397185912, 99769106353379168, 698228176760193068
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2014

Keywords

Crossrefs

Formula

a(n) = 2 * A007564(n-1) for n > 1 [from Chapoton & Giraudo, Proposition 3.8]. - Andrey Zabolotskiy, Feb 01 2025

Extensions

Terms a(9) onwards added and name clarified by Andrey Zabolotskiy, Feb 02 2025

A090375 Number of unrooted Eulerian maps with bicolored faces which are self-isomorphic under reversing the colors.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 40, 93, 224, 538, 1344, 3352, 8448, 21573, 54912, 143037, 366080, 968083, 2489344, 6664856, 17199104, 46515759, 120393728, 328382874, 852017152, 2340706462, 6085836800, 16822999572, 43818024960, 121777594508, 317680680960, 887053276477
Offset: 1

Views

Author

Valery A. Liskovets, Dec 01 2003

Keywords

Crossrefs

Programs

  • Mathematica
    A069727[n_] := (1/(2n)) (3*2^(n - 1) Binomial[2 n, n]/((n + 1) (n + 2)) + Sum[EulerPhi[n/k] d[n/k] 2^(k - 2) Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1;
    q[n_?EvenQ] := 2^((n - 4)/2) Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2) Binomial[(n - 1), (n - 1)/2]/(n + 1);
    d[n_] := 4 - Mod[n, 2];
    h0[n_] := 3*2^(n - 1) Binomial[2n, n]/((n + 1)(n + 2));
    A090371[n_] := (h0[n] + DivisorSum[n, If[# > 1, EulerPhi[#]*Binomial[n/# + 2, 2] h0[n/#], 0] &])/n;
    a[n_] := 2 A069727[n] - A090371[n];
    Array[a, 32] (* Jean-François Alcover, Aug 28 2019 *)
  • PARI
    h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
    a090371(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2, 2)*h0(n/d)))/n;
    d(n) = if (n%2, 3, 4);
    q(n) = if (n%2, 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1), 2^((n-4)/2)*binomial(n, n/2)/(n+2));
    a069727(n) = if (n==0, 1, q(n) + (3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)) + sumdiv(n, k, (k!=n)*eulerphi(n/k)*d(n/k)*2^(k-2)*binomial(2*k, k)))/(2*n));
    a(n) = 2*a069727(n) - a090371(n); \\ Michel Marcus, Dec 11 2014

Formula

a(n) = 2*A069727(n) - A090371(n).
a(2k+1) = 2^k*Catalan(k) = A052701(k+1).

Extensions

More terms from Michel Marcus, Dec 11 2014

A101477 Square array T(n,k), read by antidiagonals: number of labeled trees, with increments of labels along edges constrained to +-1, with n nodes that have no label greater than k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 2, 7, 12, 1, 2, 8, 31, 56, 1, 2, 8, 39, 156, 288, 1, 2, 8, 40, 211, 851, 1584, 1, 2, 8, 40, 223, 1219, 4909, 9152, 1, 2, 8, 40, 224, 1327, 7371, 29506, 54912, 1, 2, 8, 40, 224, 1343, 8250, 46099, 183043, 339456, 1, 2, 8, 40, 224, 1344, 8427, 52938, 295915, 1164387, 2149888
Offset: 0

Views

Author

Ralf Stephan, Jan 21 2005

Keywords

Examples

			1, 1, 3, 12,  56,  288, 1584,  9152,  54912,  339456, ...
1, 2, 7, 31, 156,  851, 4909, 29506, 183043, 1164387, ...
1, 2, 8, 39, 211, 1219, 7371, 46099, 295915, 1939395, ...
1, 2, 8, 40, 223, 1327, 8250, 52938, 347941, 2330532, ...
1, 2, 8, 40, 224, 1343, 8427, 54625, 362833, 2456261, ...
1, 2, 8, 40, 224, 1344, 8447, 54887, 365688, 2484384, ...
1, 2, 8, 40, 224, 1344, 8448, 54911, 366051, 2488831, ...
1, 2, 8, 40, 224, 1344, 8448, 54912, 366079, 2489311, ...
1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489343, ...
1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489344, ...
		

Crossrefs

Rows converge to A052701. First row is A000257.

Programs

  • Mathematica
    nmax = 11;
    b[x_] = Sum[2^(n - 1)*(2*n - 2)!/(n - 1)!/n! x^n, {n, 1, nmax}];
    c[x_] = 0; Do[c[x_] = x*(1 + c[x])^4/(1 + c[x]^2) + O[x]^nmax, {nmax}];
    a[n_, t_] := a[n, t] = b[t]*(1 - c[t]^(n + 1))*(1 - c[t]^(n + 5))/((1 - c[t]^(n + 2))*(1 - c[t]^(n + 4)));
    T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}];
    Table[T[n - k, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)

Formula

G.f. of k-th row: A(t)=B(t)*(1-C(t)^(k+1))*(1-C(t)^(k+5))/[(1-C(t)^(k+2))*(1-C(t)^(k+4))], with tB(t) the g.f. of A052701 and C(t) the g.f. of A101478.

A101596 G.f.: c(2*x)^4, where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 8, 56, 384, 2640, 18304, 128128, 905216, 6449664, 46305280, 334721024, 2434334720, 17801072640, 130809692160, 965500108800, 7154863964160, 53214300733440, 397094950010880, 2972195534929920, 22308469918924800
Offset: 0

Views

Author

Paul Barry, Dec 08 2004

Keywords

Comments

a(n) is also the number of paths in a binary tree of length 2n+3 between two vertices that are 3 steps apart. - David Koslicki, (koslicki(AT)math.psu.edu), Nov 02 2010

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-8z]+4z(-2+Sqrt[1-8z]+2z))/(32z^4), {z, 0, 20}],z] (* Benedict W. J. Irwin, Jul 12 2016 *)
  • PARI
    x='x+O('x^50); Vec((1-sqrt(1-8*x) + 4*x*(2*x-2+ sqrt(1-8*x)) )/(32*x^4)) \\ G. C. Greubel, May 24 2017

Formula

a(n) = ((8*n+12)/(3*n+12))*((3*n+3)/(n+3))*2^n*C(n+1), where C(n) and the Catalan numbers of A000108.
Conjecture: (n+4)*a(n)-4*(3n+7)*a(n-1)+16*(2n+1)*a(n-2)=0. - R. J. Mathar, Dec 13 2011
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: (1-sqrt(1-8*x)+4*x*(2*x-2+sqrt(1-8*x)))/(32*x^4).
E.g.f: E^(4*x)*(2*x*(4*x-3)*BesselI(0,4*x) + (3-4*x+ 8*x^2)* BesselI(1, 4*x))/(4*x^3). (End)
a(n) ~ 2^(3*n+5)*n^(-3/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016

A114608 Triangle read by rows: T(n,k) is the number of bicolored Dyck paths of semilength n and having k peaks of the form ud (0 <= k <= n). A bicolored Dyck path is a Dyck path in which each up-step is of two kinds: u and U.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 19, 9, 1, 45, 96, 66, 16, 1, 197, 501, 450, 170, 25, 1, 903, 2668, 2955, 1520, 365, 36, 1, 4279, 14407, 18963, 12355, 4165, 693, 49, 1, 20793, 78592, 119812, 94528, 41230, 9856, 1204, 64, 1, 103049, 432073, 748548, 693588, 372078, 117054
Offset: 0

Views

Author

Emeric Deutsch, Dec 15 2005

Keywords

Comments

Row sums yield A052701. Column 0 yields the little Schroeder numbers (A001003). Sum_{k=0..n} k*T(n,k) = A069720(n).
Triangle T(n,k), 0 <= k <= n, read by rows; given by [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 23 2005

Examples

			T(3,2)=9 because we have (ud)(ud)Ud, (ud)Ud(ud), Ud(ud)(ud), (ud)u(ud)d,
(ud)U(ud)d, u(ud)d(ud), U(ud)d(ud), u(ud)(ud)d and U(ud)(ud)d (the ud peaks are shown between parentheses).
Triangle starts:
   1;
   1,  1;
   3,  4,  1;
  11, 19,  9,  1;
  45, 96, 66, 16,  1;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n-1 then (1/n)*binomial(n,k)*sum(2^j*binomial(n,j+1)*binomial(n-k,j),j=0..n-k) elif k=n then 1 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := If[k <= n-1, (1/n)*Binomial[n, k]*Sum[2^j*Binomial[n, j+1]* Binomial[n-k, j], {j, 0, n-k}], If[k == n, 1, 0]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 11 2018, from Maple *)

Formula

T(n,k) = (1/n)*binomial(n,k)*Sum_{j=0..n-k} 2^j*binomial(n, j+1)*binomial(n-k, j) (k <= n-1); T(n, n)=1.
G.f. = G = G(t, z) satisfies G = 1 + z*(G-1+t)*G + z*G^2.

A117505 Triangle of coefficients for polynomials used for the column g.f.s of triangle A116880, called CM(1,2).

Original entry on oeis.org

1, 2, 1, 2, 4, 3, 2, 4, 16, 13, 2, 4, 16, 80, 67, 2, 4, 16, 80, 448, 381, 2, 4, 16, 80, 448, 2688, 2307, 2, 4, 16, 80, 448, 2688, 16896, 14589, 2, 4, 16, 80, 448, 2688, 16896, 109824, 95235, 2, 4, 16, 80, 448, 2688
Offset: 0

Views

Author

Wolfdieter Lang, Apr 13 2006

Keywords

Comments

The g.f. G(m,x) for column m=1,2,... of triangle A116880=CM(1,2) is x*(-sum(a(m,k)*x^(k-1),k=1..m) + sum(a(m,k)*x^k,k=0..m)*2*c(2*x))/(1+x), with the o.g.f. c(x) of A000108 (Catalan numbers).

Examples

			m=3: G(3,x)= x*(-(4+16*x+13*x^2) +
(2+4*x+16*x^2+13*x^3)*2*c(2*x))/(1+x).
		

Formula

a(m,m)= A064062(m) =:C(2;m), m>=0 and a(m,k)=2*A052701(k) = C(k)*2^(k+1), for k=1,...,m-1 and C(k):=A000108(k) (Catalan).

A234938 Coefficients of Hilbert series for the suboperad of bicolored noncrossing configurations generated by a fully colored triangle and a fully uncolored triangle.

Original entry on oeis.org

1, 2, 8, 40, 216, 1246, 7516, 46838, 299200, 1948804, 12893780, 86415940, 585461380, 4003022222, 27587072156, 191426864328, 1336331235624, 9378578814890, 66133103587412, 468323884345060, 3329180643569660, 23748479467116032, 169944228206075568, 1219639212041064130
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Rest@CoefficientList[Root[Function[{f}, 4t-2t^2-t^3+t^4 + (-4+4t-t^2+2t^3)f + (6+t)f^2 + (1-2t)f^3 - f^4], 2] + O[t]^25, t] (* Andrey Zabolotskiy, Feb 02 2025 *)

Formula

G.f. A(t) satisfies 4t-2t^2-t^3+t^4 + (-4+4t-t^2+2t^3)*A(t) + (6+t)*A(t)^2 + (1-2t)*A(t)^3 - A(t)^4 = 0 [Chapoton & Giraudo, Proposition 3.5]. - Andrey Zabolotskiy, Feb 02 2025

Extensions

Terms a(9) onwards added and name clarified by Andrey Zabolotskiy, Feb 02 2025

A214582 Riordan array (1/(1-x-x^2), x*(1+2*x)).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 4, 5, 1, 5, 7, 10, 7, 1, 8, 11, 15, 20, 9, 1, 13, 18, 25, 35, 34, 11, 1, 21, 29, 40, 55, 75, 52, 13, 1, 34, 47, 65, 90, 125, 143, 74, 15, 1, 55, 76, 105, 145, 200, 275, 247, 100, 17, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 06 2013

Keywords

Comments

First column is A000045 (Fibonacci numbers) starting with 1.
Second column is A000032 (Lucas numbers) starting with 1.

Examples

			Triangle begins
1
1, 1
2, 3, 1
3, 4, 5, 1
5, 7, 10, 7, 1
8, 11, 15, 20, 9, 1
13, 18, 25, 35, 34, 11, 1
21, 29, 40, 55, 75, 52, 13, 1
34, 47, 65, 90, 125, 143, 74, 15, 1
55, 76, 105, 145, 200, 275, 247, 100, 17, 1
...
Production array begins
1, 1
1, 2, 1
-2, -4, 2, 1
8, 16, -4, 2, 1
-40, -80, 16, -4, 2, 1
224, 448, -80, 16, -4, 2, 1
-1344, -2688, 448, -80, 16, -4, 2, 1
8448, 16896, -2688, 448, -80, 16, -4, 2, 1
... which is based on A052701.
		

Crossrefs

Formula

T(n,0) = T(n-1,0) + T(n-2,0), T(n,k) = T(n-1,k-1) + 2*T(n-2,k-1) for k>0.
Sum_{k, 0<=k<=n} T(n,k) = A094687(n+2).
T(2n,n) = A081567(n).

A307900 Number of functions constructed from n instances of variable x using operators + (add), * (multiply), and parentheses.

Original entry on oeis.org

1, 2, 4, 10, 24, 61, 150, 382, 964, 2452, 6307, 16379, 42989, 113965, 305035, 823632, 2241814, 6145670, 16956972, 47059076, 131279567
Offset: 1

Views

Author

Vladimir Reshetnikov, May 04 2019

Keywords

Comments

Structurally different expressions that represent the same function of x are only counted once. So, a(n) <= A052701(n).

Examples

			For n = 1, we have only one function {x}, so a(1) = 1.
For n = 2, we have {x*x, x + x} = {x^2, 2*x}, so a(2) = 2.
For n = 3, we have {x^2*x, 2*x*x, x^2 + x, 2*x + x} = {x^3, 2*x^2, x^2 + x, 3*x}, so a(3) = 4.
For n = 4, we have {x^4, 2*x^3, x^3 + x^2, x^3 + x, 4*x^2, 3*x^2, 2*x^2 + x, 2*x^2, x^2 + 2*x, 4*x}, so a(4) = 10.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=1, {x}, {seq(seq(seq([f+g,
            expand(f*g)][], g=b(n-i)), f=b(i)), i=1..iquo(n, 2))})
        end:
    a:= n-> nops(b(n)):
    seq(a(n), n=1..12);  # Alois P. Heinz, May 04 2019
  • Mathematica
    ClearAll[a, f, x, n, k]; f[1] = {x}; f[n_Integer] := f[n] = DeleteDuplicates[Expand[Flatten[Table[Outer[#1[#2, #3] &, {Times, Plus}, f[k], f[n - k]], {k, n/2}]]]]; a[n_Integer] := Length[f[n]]; Table[a[n], {n, 15}]

Extensions

a(19)-a(20) from Alois P. Heinz, May 04 2019
a(21) from Vladimir Reshetnikov, May 05 2019
Previous Showing 11-20 of 20 results.