cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A122870 Primes congruent to 3 or 7 mod 20.

Original entry on oeis.org

3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383, 443, 463, 467, 487, 503, 523, 547, 563, 587, 607, 643, 647, 683, 727, 743, 787, 823, 827, 863, 883, 887, 907, 947, 967, 983, 1063, 1087, 1103, 1123, 1163, 1187, 1223
Offset: 1

Views

Author

Alexander Adamchuk, Sep 16 2006

Keywords

Comments

The old name was "Primes p that divide Lucas((p+1)/2) = A000032((p+1)/2)".
Note that F(p+1) = F((p+1)/2)*Lucas((p+1)/2), where F = A000045. Since gcd(F(n),Lucas(n)) = 1 or 2 (because Lucas(n)^2 - 5*F(n)^2 = 4*(-1)^n), this sequence (under the old definition above) lists primes p such that p divides F(p+1) but does not divides F((p+1)/2). By Propositions 1.1 and 1.2 (the k = 3 case) of my link below, this is primes p == 3, 7 (mod 20). - Jianing Song, Jun 20 2025

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.

Crossrefs

Subseqeunce of A002145, A003631, A049098, A053027. Essentially the same as A106865.

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | p mod 20 in [3, 7]]; // Vincenzo Librandi, Jan 06 2013
  • Mathematica
    Select[Prime[Range[1000]],IntegerQ[(Fibonacci[(#1+1)/2-1]+Fibonacci[(#1+1)/2+1])/#1]&]
    Select[Prime[Range[300]], MemberQ[{3, 7}, Mod[#, 20]]&] (* Vincenzo Librandi, Jan 06 2013 *)

Extensions

I merged A216816 into this entry at the suggestion of Jianing Song, Jun 20 2025. - N. J. A. Sloane, Jun 22 2025

A086598 Number of distinct prime factors in Lucas(n).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 3, 1, 1, 3, 1, 2, 3, 3, 2, 3, 3, 2, 3, 2, 2, 4, 1, 2, 3, 3, 4, 4, 1, 2, 4, 3, 1, 5, 2, 4, 6, 3, 1, 4, 2, 4, 4, 3, 1, 4, 4, 2, 4, 3, 3, 6, 1, 2, 6, 2, 5, 5, 2, 2, 5, 4, 1, 4, 2, 3, 7, 2, 4, 4, 1, 2, 5, 4, 2, 6, 4, 2, 5, 3, 2, 6, 3, 3, 4, 4, 5, 4, 2, 4, 7, 4, 3, 6, 3, 4, 9
Offset: 0

Views

Author

T. D. Noe, Jul 24 2003

Keywords

Comments

Interestingly, the Lucas numbers separate the primes into three disjoint sets: (A053028) primes that do not divide any Lucas number, (A053027) primes that divide Lucas numbers of even index and (A053032) primes that divide Lucas numbers of odd index.

Crossrefs

Cf. A000204 (Lucas numbers), A086599 (number of prime factors, counting multiplicity), A086600 (number of primitive prime factors).

Programs

  • Magma
    [#PrimeDivisors(Lucas(n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
  • Mathematica
    Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; Table[Length[FactorInteger[Lucas[n]]], {n, 150}]
  • PARI
    a(n)=omega(fibonacci(n-1)+fibonacci(n+1)) \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

a(n) = Sum{d|n and n/d odd} A086600(d) + 1 if 6|n, a Mobius-like transform

Extensions

a(0)=1 prepended by Max Alekseyev, Jun 15 2025

A140409 Prime factors of Lucas numbers.

Original entry on oeis.org

2, 3, 7, 11, 19, 23, 29, 31, 41, 43, 47, 59, 67, 71, 79, 83, 101, 103, 107, 127, 131, 139, 151, 163, 167, 179, 181, 191, 199, 211, 223, 227, 229, 239, 241, 251, 263, 271, 281, 283, 307, 311, 331, 347, 349, 359, 367, 379, 383, 401, 409, 419, 431, 439, 443, 449
Offset: 1

Views

Author

Tanya Khovanova, Jun 16 2008

Keywords

Comments

a(n) is A096362(n) in ascending order.

Crossrefs

Cf. A096362 Order in which prime factors first occur in the Lucas sequence.

Formula

Union of 2, A053027 and A053032 - T. D. Noe, Jun 21 2008

Extensions

More terms from T. D. Noe, Jun 21 2008

A215850 Primes p such that 2*p + 1 divides Lucas(p).

Original entry on oeis.org

5, 29, 89, 179, 239, 359, 419, 509, 659, 719, 809, 1019, 1049, 1229, 1289, 1409, 1439, 1499, 1559, 1889, 2039, 2069, 2129, 2339, 2399, 2459, 2549, 2699, 2819, 2939, 2969, 3299, 3329, 3359, 3389, 3449, 3539, 3779, 4019, 4349, 4409, 4919, 5039, 5279, 5399, 5639
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 24 2012

Keywords

Comments

An equivalent definition of this sequence: 5 together with primes p such that p == -1 (mod 30) and 2*p + 1 is also prime.
Sequence without the initial 5 is the intersection of A005384 and A132236.
These numbers do not occur in A137715.
From Arkadiusz Wesolowski, Aug 25 2012: (Start)
The sequence contains numbers like 1409 which are in A053027.
a(n) is in A002515 if and only if a(n) is congruent to -1 mod 60. (End)

Examples

			29 is in the sequence since it is prime and 59 is a factor of Lucas(29) = 1149851.
		

Crossrefs

Supersequence of A230809. Cf. A000032, A132236.

Programs

  • Magma
    [5] cat [n: n in [29..5639 by 30] | IsPrime(n) and IsPrime(2*n+1)];
    
  • Mathematica
    Select[Prime@Range[740], Divisible[LucasL[#], 2*# + 1] &]
    Prepend[Select[Range[29, 5639, 30], PrimeQ[#] && PrimeQ[2*# + 1] &], 5]
  • PARI
    is_A215850(n)=isprime(n)&!real((Mod(2,2*n+1)+quadgen(5))*quadgen(5)^n) \\ - M. F. Hasler, Aug 25 2012

A116515 a(n) = the period of the Fibonacci numbers modulo p divided by the smallest m such that p divides Fibonacci(m), where p is the n-th prime.

Original entry on oeis.org

1, 2, 4, 2, 1, 4, 4, 1, 2, 1, 1, 4, 2, 2, 2, 4, 1, 4, 2, 1, 4, 1, 2, 4, 4, 1, 2, 2, 4, 4, 2, 1, 4, 1, 4, 1, 4, 2, 2, 4, 1, 1, 1, 4, 4, 1, 1, 2, 2, 1, 4, 1, 2, 1, 4, 2, 4, 1, 4, 2, 2, 4, 2, 1, 4, 4, 1, 4, 2, 1, 4, 1, 2, 4, 1, 2, 4, 4, 2, 2, 1, 4, 1, 4, 1, 2, 2, 4, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 2, 2, 1
Offset: 1

Views

Author

Nick Krempel, Mar 24 2006

Keywords

Comments

Conditions on p_n mod 4 and mod 5 restrict possible values of a(n). The unknown (?) case is p = 1 mod 4 and (5|p) = 1, equivalently, p = 1 or 9 mod 20, where {1, 2, 4} all occur.
Number of zeros in fundamental period of Fibonacci numbers mod prime(n). [From T. D. Noe, Jan 14 2009]

Examples

			a(4) = 2, as 7 is the 4th prime, the Fibonacci numbers mod 7 have period 16, the first Fibonacci number divisible by 7 is F(8) = 21 = 3*7 and 16 / 8 = 2.
One period of the Fibonacci numbers mod 7 is 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, which has two zeros. Hence a(4)=2. [From _T. D. Noe_, Jan 14 2009]
		

Crossrefs

Cf. A112860, A053027, A053028 (primes producing 1, 2 and 4 zeros) [From T. D. Noe, Jan 14 2009]

Formula

a(n) = A060305(n) / A001602(n). a(n) is always one of {1, 2, 4}.
a(n) = A001176(prime(n)) [From T. D. Noe, Jan 14 2009]
Previous Showing 21-25 of 25 results.