cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A016278 Expansion of g.f. 1/((1-2x)(1-3x)(1-9x)).

Original entry on oeis.org

1, 14, 145, 1370, 12541, 113534, 1023865, 9221090, 83008981, 747138854, 6724424785, 60520350410, 544684739821, 4902167424974, 44119521140905, 397075733249330, 3573681728253061, 32163135941435894, 289468224634660225
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-2*x)*(1-3*x)*(1-9*x)))); // Vincenzo Librandi, Jun 24 2013
  • Mathematica
    CoefficientList[Series[1 / ((1 - 2 x) (1 - 3 x) (1 - 9 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 24 2013 *)
  • PARI
    Vec(1/((1-2*x)*(1-3*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    

Formula

a(n) = 14*a(n-1) - 51*a(n-2) + 54*a(n-3); a(n) = (4/7)*2^(n-1) + (-3/2)*3^(n-1) + (27/14)*9^(n-1). - Antonio Alberto Olivares, Apr 21 2008, Apr 22 2008
E.g.f.: exp(2*x)*(8 - 21*exp(x) + 27*exp(7*x))/14. - Stefano Spezia, Feb 12 2025

A055141 Matrix inverse of triangle A055140.

Original entry on oeis.org

1, 0, 1, -2, 0, 1, -8, -6, 0, 1, -36, -32, -12, 0, 1, -224, -180, -80, -20, 0, 1, -1880, -1344, -540, -160, -30, 0, 1, -19872, -13160, -4704, -1260, -280, -42, 0, 1, -251888, -158976, -52640, -12544, -2520, -448, -56, 0, 1, -3712256, -2266992
Offset: 0

Views

Author

Christian G. Bower, May 09 2000

Keywords

Comments

T is an example of the group of matrices outlined in the table in A132382--the associated matrix for aC(1,1). The e.g.f. for the row polynomials is exp(x*t) * exp(x) * (1-2*x)^(1/2). T(n,k) = Binomial(n,k)* s(n-k) where s = A055142 with an e.g.f. of exp(x) * (1-2*x)^(1/2) which is the reciprocal of the e.g.f. of A053871. The row polynomials form an Appell sequence. [From Tom Copeland, Sep 11 2008]

Examples

			1; 0,1; -2,0,1; -8,-6,0,1; -36,-32,-12,0,1; ...
		

Formula

a(n, k) = A053142(n-k)*C(n, k).

A077784 Numbers k such that (10^k - 1)/3 + 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

3, 5, 35, 159, 237, 325, 355, 371, 481, 1649, 3641, 4709, 269623
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
a(13) > 2*10^5. - Robert Price, Apr 03 2016

Examples

			5 is a term because (10^5 - 1)/3 + 2*10^2 = 33533.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(10^n + 6*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 4800, 2}] (* Robert G. Wilson v, Dec 16 2005 *)

Formula

a(n) = 2*A183175(n) + 1.

Extensions

Name corrected by Jon E. Schoenfield, Oct 31 2018
a(13) from Robert Price, Aug 03 2024

A077828 Expansion of 1/(1-3*x-3*x^2-3*x^3).

Original entry on oeis.org

1, 3, 12, 48, 189, 747, 2952, 11664, 46089, 182115, 719604, 2843424, 11235429, 44395371, 175422672, 693160416, 2738935377, 10822555395, 42763953564, 168976333008, 667688525901, 2638286437419, 10424853888984, 41192486556912, 162766880649945, 643152663287523
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Partial sums of S(n, x), for x=1...12, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784, A097826-7.
Cf. A071675.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-3x-3x^2-3x^3),{x,0,30}],x] (* or *) LinearRecurrence[ {3,3,3},{1,3,12},30] (* Harvey P. Dale, Dec 25 2018 *)
  • PARI
    Vec(1/(1-3*x-3*x^2-3*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

a(n) = sum{k=0..n, T(n-k, k)3^(n-k)}, T(n, k) = trinomial coefficients (A027907). - Paul Barry, Feb 15 2005
a(n) = sum{k=0..n, sum{i=0..floor((n-k)/2), C(n-k-i, i)C(k, n-k-i)}*3^k}. - Paul Barry, Apr 26 2005

A077829 Expansion of 1/(1-3*x-3*x^2-2*x^3).

Original entry on oeis.org

1, 3, 12, 47, 183, 714, 2785, 10863, 42372, 165275, 644667, 2514570, 9808261, 38257827, 149227404, 582072215, 2270414511, 8855914986, 34543132921, 134737972743, 525555146964, 2049965624963, 7996038261267, 31189121952618, 121655411891581, 474525678055131
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Partial sums of S(n, x), for x=1...14, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784, A097826-A097828, A076139.

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - 3*x - 3*x^2 - 2*x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 20 2024 *)
    LinearRecurrence[{3,3,2},{1,3,12},30] (* Harvey P. Dale, Dec 20 2024 *)
  • PARI
    Vec(1/(1-3*x-3*x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

G.f.: 1/(1-3*x-3*x^2-2*x^3).
a(n) = 3*a(n-1) + 3*a(n-2) + 2*a(n-3). - Wesley Ivan Hurt, Jan 20 2024

A077831 Expansion of 1/(1-3*x-2*x^2-2*x^3).

Original entry on oeis.org

1, 3, 11, 41, 151, 557, 2055, 7581, 27967, 103173, 380615, 1404125, 5179951, 19109333, 70496151, 260067021, 959412031, 3539362437, 13057045415, 48168685181, 177698871247, 655548074933, 2418379337655, 8921631905325, 32912750541151, 121418274109413
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-3x-2x^2-2x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,2,2},{1,3,11},30] (* Harvey P. Dale, Feb 28 2025 *)
  • PARI
    Vec(1/(1-3*x-2*x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

A077826 Expansion of (1-x)^(-1)/(1-2*x-3*x^2-2*x^3).

Original entry on oeis.org

1, 3, 10, 32, 101, 319, 1006, 3172, 10001, 31531, 99410, 313416, 988125, 3115319, 9821846, 30965900, 97627977, 307797347, 970410426, 3059468848, 9645763669, 30410754735, 95877738174, 302279267892, 953013259777, 3004619799579, 9472837914274, 29865561746840
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Partial sums of S(n, x), for x=1...10, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784.
Partial sums of A077833.

Programs

Formula

From Wesley Ivan Hurt, Jun 26 2022: (Start)
G.f.: (1-x)^(-1)/(1-2*x-3*x^2-2*x^3).
a(n) = 3*a(n-1) + a(n-2) - a(n-3) - 2*a(n-4). (End)

A077827 Expansion of (1-x)^(-1)/(1-2*x-2*x^2-2*x^3).

Original entry on oeis.org

1, 3, 9, 27, 79, 231, 675, 1971, 5755, 16803, 49059, 143235, 418195, 1220979, 3564819, 10407987, 30387571, 88720755, 259032627, 756281907, 2208070579, 6446770227, 18822245427, 54954172467, 160446376243, 468445588275, 1367692273971, 3993168476979, 11658612678451
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002, Jun 05 2007

Keywords

Crossrefs

Partial sums of S(n, x), for x=1...11, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784, A097826.

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-2x-2x^2-2x^3),{x,0,40}],x]  (* Harvey P. Dale, Mar 27 2011 *)
  • PARI
    Vec((1-x)^(-1)/(1-2*x-2*x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

A077830 Expansion of 1/(1-3*x-2*x^2-3*x^3).

Original entry on oeis.org

1, 3, 11, 42, 157, 588, 2204, 8259, 30949, 115977, 434606, 1628619, 6103000, 22870056, 85702025, 321155187, 1203479779, 4509855786, 16899992477, 63330128340, 237319937332, 889320046107, 3332590398005, 12488371098225, 46798254229006, 175369276077483
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-3x-2x^2-3x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,2,3},{1,3,11},40] (* Harvey P. Dale, Nov 05 2021 *)

A358682 Numbers k such that 8*k^2 + 8*k - 7 is a square.

Original entry on oeis.org

1, 7, 43, 253, 1477, 8611, 50191, 292537, 1705033, 9937663, 57920947, 337588021, 1967607181, 11468055067, 66840723223, 389576284273, 2270616982417, 13234125610231, 77134136678971, 449570694463597, 2620290030102613, 15272169486152083, 89012726886809887, 518804191834707241
Offset: 1

Views

Author

Stefano Spezia, Nov 26 2022

Keywords

Comments

a(n) is the n-th almost cobalancing number of second type (see Tekcan and Erdem).

Examples

			a(2) = 7 is a term since 8*7^2 + 8*7 - 7 = 441 = 21^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-7,1},{1,7,43},24]

Formula

a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 3.
a(n) = (3*(3 - 2*sqrt(2))^n*(2 + sqrt(2)) + 3*(2 - sqrt(2))*(3 + 2*sqrt(2))^n - 4)/8.
O.g.f.: x*(1 + x^2)/((1 - x)*(1 - 6*x + x^2)).
E.g.f.: (3*(2 + sqrt(2))*(cosh(3*x - 2*sqrt(2)*x) + sinh(3*x - 2*sqrt(2)*x)) + 3*(2 - sqrt(2))*(cosh(3*x + 2*sqrt(2)*x) + sinh(3*x + 2*sqrt(2)*x)) - 4*(cosh(x) + sinh(x)) - 8)/8.
a(n) = 3*A011900(n) - 2 = 6*A053142(n) + 1. - Hugo Pfoertner, Nov 26 2022
Previous Showing 11-20 of 20 results.