cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A365345 The number of divisors of the smallest square divisible by n.

Original entry on oeis.org

1, 3, 3, 3, 3, 9, 3, 5, 3, 9, 3, 9, 3, 9, 9, 5, 3, 9, 3, 9, 9, 9, 3, 15, 3, 9, 5, 9, 3, 27, 3, 7, 9, 9, 9, 9, 3, 9, 9, 15, 3, 27, 3, 9, 9, 9, 3, 15, 3, 9, 9, 9, 3, 15, 9, 15, 9, 9, 3, 27, 3, 9, 9, 7, 9, 27, 3, 9, 9, 27, 3, 15, 3, 9, 9, 9, 9, 27, 3, 15, 5, 9, 3
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Comments

The sum of these divisors is A365346(n).
The number of divisors of the square root of the smallest square divisible by n is A322483(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e + 1 + Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> x + 1 + x%2, factor(n)[, 2]));
    
  • PARI
    a(n) = numdiv(n*core(n)); \\ Michel Marcus, Sep 02 2023

Formula

a(n) = A000005(A053143(n)).
Multiplicative with a(p^e) = e + 1 + (e mod 2).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 2/p^s - 1/p^(2*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s)^3 * zeta(2*s) * Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Let f(s) = Product_{primes p} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^2 * n / 6 * (log(n)^2/2 + (3*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)) * log(n) + 1 - 3*gamma + 3*gamma^2 - 3*sg1 + (3*gamma - 1)*12*zeta'(2)/Pi^2 + 12*zeta''(2)/Pi^2 + (12*zeta'(2)/Pi^2 + 3*gamma - 1)*f'(1)/f(1) + f''(1)/(2*f(1))), where
f(1) = Product_{primes p} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
f'(1) = f(1) * Sum_{primes p} 4*(2*p - 1) * log(p) / (1 - 3*p + p^2 + p^3) = 0.7343690473711153863995729489689746152413988981744946512300478410459132782...
f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} 4*p*(-1 + 2*p + p^2 - 4*p^3) * log(p)^2 / (1 - 3*p + p^2 + p^3)^2 = 0.1829055032494906699795154632343894745397324334876662084674149254022564139...,
gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)

A365479 The sum of unitary divisors of the smallest square divisible by n.

Original entry on oeis.org

1, 5, 10, 5, 26, 50, 50, 17, 10, 130, 122, 50, 170, 250, 260, 17, 290, 50, 362, 130, 500, 610, 530, 170, 26, 850, 82, 250, 842, 1300, 962, 65, 1220, 1450, 1300, 50, 1370, 1810, 1700, 442, 1682, 2500, 1850, 610, 260, 2650, 2210, 170, 50, 130, 2900, 850, 2810, 410
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of unitary divisors of the smallest square divisible by n is the same as the number of unitary divisors of n, A034444(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + p^(e + Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^(f[i,2] + f[i,2]%2) + 1);}
    
  • Python
    from math import prod
    from sympy import factorint
    def A365479(n): return prod(p**(e+(e&1))+1 for p,e in factorint(n).items()) # Chai Wah Wu, Sep 05 2023

Formula

a(n) = A034448(A053143(n)).
Multiplicative with a(p^e) = p^(e + (e mod 2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-2) - 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/45) * zeta(3) * Product_{p prime} (1 - 1/p^4 + 1/p^5 - 1/p^6) = 0.248414056414... .

A372329 a(n) is the smallest multiple of n whose number of divisors is a power of 2 (A036537).

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 128, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 128, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 384, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
Offset: 1

Views

Author

Amiram Eldar, Apr 28 2024

Keywords

Crossrefs

Differs from A102631 at n = 8, 24, 27, 32, 40, 54, 56, 64, ... .

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e + 1]] - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e=logint(n + 1, 2)); if(n + 1 == 2^e, n, 2^(e+1) - 1)};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i, 1]^s(f[i, 2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e+1)) - 1).
a(n) = n * A372328(n).
a(n) = n if and only if n is in A036537.
a(n) <= n^2, with equality if and only if n = 1.

A055491 Smallest square divisible by n divided by largest square which divides n.

Original entry on oeis.org

1, 4, 9, 1, 25, 36, 49, 4, 1, 100, 121, 9, 169, 196, 225, 1, 289, 4, 361, 25, 441, 484, 529, 36, 1, 676, 9, 49, 841, 900, 961, 4, 1089, 1156, 1225, 1, 1369, 1444, 1521, 100, 1681, 1764, 1849, 121, 25, 2116, 2209, 9, 1, 4, 2601, 169, 2809, 36, 3025, 196, 3249, 3364
Offset: 1

Views

Author

Henry Bottomley, Jun 28 2000

Keywords

Examples

			a(12) = 36/4 = 9.
		

Crossrefs

Programs

  • Haskell
    a055491 = (^ 2) . a007913  -- Reinhard Zumkeller, Jul 23 2014
    
  • Mathematica
    With[{sqs=Range[100]^2},Table[SelectFirst[sqs,Divisible[#,n]&]/ SelectFirst[ Reverse[sqs],Divisible[n,#]&],{n,60}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 18 2018 *)
    f[p_, e_] := p^(2 * Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(2*(f[i,2]%2)));} \\ Amiram Eldar, Oct 27 2022

Formula

If n is written as Product(Pj^Ej) then a(n) = Product(Pj^(2*(Ej mod 2))).
a(n) = A053143(n)/A008833(n) = A007913(n)^2 = (A019554(n)/A000188(n))^2 = A000290(n)/A008833(n)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(6)/(3*zeta(2))) = 2*Pi^4/945 = 0.206156... . - Amiram Eldar, Oct 27 2022
Dirichlet g.f.: zeta(s-2) * zeta(2*s) / zeta(2*s-4). - Amiram Eldar, Sep 16 2023

A145109 a(n) = 2*n * core(2*n).

Original entry on oeis.org

4, 4, 36, 16, 100, 36, 196, 16, 36, 100, 484, 144, 676, 196, 900, 64, 1156, 36, 1444, 400, 1764, 484, 2116, 144, 100, 676, 324, 784, 3364, 900, 3844, 64, 4356, 1156, 4900, 144, 5476, 1444, 6084, 400, 6724, 1764, 7396, 1936, 900, 2116, 8836, 576, 196, 100, 10404
Offset: 1

Views

Author

Reikku Kulon, Oct 02 2008

Keywords

Comments

All terms are even squares (A016742).

Crossrefs

Programs

  • Mathematica
    a[1] = 4; a[n_] := 2*n * Times @@ (First[#]^Mod[Last[#], 2] & /@ FactorInteger[2*n]); Array[a, 50] (* Amiram Eldar, Sep 05 2020 *)
  • PARI
    a(n) = 2*n * core(2*n); \\ Michel Marcus, Aug 09 2013

Formula

a(n) = A053143(2*n). - Michel Marcus, Aug 09 2013

Extensions

Definition corrected by Michel Marcus, Aug 09 2013
Previous Showing 11-15 of 15 results.