cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A188596 Decimal expansion of Product_{primes p} (1-1/p)^(-2)*(1-(2+A102283(p))/p).

Original entry on oeis.org

1, 5, 2, 1, 7, 3, 1, 5, 3, 5, 0, 7, 5, 7, 0, 5, 8, 1, 8, 8, 4, 1, 9, 5, 9, 4, 3, 4, 2, 9, 1, 3, 1, 1, 6, 9, 4, 0, 8, 0, 8, 0, 2, 7, 9, 5, 9, 4, 5, 4, 5, 0, 8, 6, 0, 5, 0, 8, 1, 5, 7, 9, 1, 8, 4, 5, 8, 1, 7, 3, 8, 5, 1, 3, 5, 6, 8, 2, 0, 3, 3, 0, 1, 0, 8, 1, 1, 4, 6, 5, 9, 5, 6, 5, 6, 4, 5, 4, 2, 7, 8, 7, 6, 4, 5
Offset: 1

Views

Author

R. J. Mathar, Apr 05 2011

Keywords

Comments

This is the principal scale factor in an estimate of the number of primes p not exceeding N such that p^2+p+1 is also prime [Bateman-Horn].
A102283 in the definition plays the role of the Dirichlet character modulo 3.
After splitting the product into the three modulo-3 classes of primes, this constant turns out to be the product of four factors.
One factor as mentioned by Bateman and Horn is the inverse of A073010.
The second factor is 3/4 arising from the prime 3 which is the sole prime in the class == 0 (mod 3).
The third factor is product_{p == 1 (mod 3)} (1-(3p-1)/(p-1)^3) = 0.8675121817.. which is the constant C(m=3,n=1,s=3) of the arXiv preprint, basically the C(3) variant of A065418 reduced to the modulo class.
The final factor is product_{p == 2 (mod 3)} (1+1/(p^2-1)) = 1/product_{p == 2 (mod 3)} (1-1/p^2) = 1.41406439089214763.. which is the constant zeta(m=3,n=2,s=2) of the preprint and mentioned in A175646.

Examples

			Equals 1.5217315350757058188419... = 0.92003856361849186... / A073010 .
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 86.

Crossrefs

Cf. A053182.

Programs

  • Maple
    a073010 := evalf(Pi/3/sqrt(3)) ;
    Cm3n0s2 := 1-1/(3-1)^2 ;
    Cm3n1s3 := 0.867512181712394919089076584762888869720269526863 ;
    Zm3n2s2 := 1.4140643908921476375655018190798293799076950693931 ;
    Cm3n0s2*Cm3n1s3*Zm3n2s2/a073010 ;
  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[3^(5/2)*Zs[3, 1, 3]*Z[3, 2, 2]/(4*Pi), digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Extensions

More terms from Vaclav Kotesovec, Jan 16 2021

A216061 Primes p such that p^3 + p + 1 is prime.

Original entry on oeis.org

2, 3, 5, 17, 29, 41, 53, 71, 83, 131, 179, 191, 239, 263, 311, 389, 491, 509, 557, 569, 593, 653, 701, 719, 743, 797, 821, 863, 887, 953, 971, 977, 1019, 1049, 1097, 1109, 1277, 1301, 1319, 1373, 1427, 1481, 1523, 1559, 1601, 1607, 1613, 1667, 1787, 1823
Offset: 1

Views

Author

César Eliud Lozada, Aug 31 2012

Keywords

Crossrefs

Cf. A053182.
Subsequence of A045309.

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | IsPrime(p^3+p+1)]; // Bruno Berselli, Sep 01 2012
  • Maple
    A := {}; for n to 1000 do p := ithprime(n); if isprime(p^3+p+1) then A := `union`(A, {p}) end if end do; A := A
  • Mathematica
    Select[Prime[Range[400]], PrimeQ[#^3 + # + 1] &] (* Bruno Berselli, Sep 01 2012 *)

A238400 Primes in A238399.

Original entry on oeis.org

2, 3, 7, 1237, 66067, 525593, 974167, 1412473, 2675759, 4471237, 5264333, 8107961, 8308271, 12615151, 20145407, 34926433, 43167569, 94772749, 104612297, 115103327, 144450221, 153124973, 165108557, 196634723, 211696049, 213507241, 255963131, 263979101
Offset: 1

Views

Author

Torlach Rush, Feb 26 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Select[(PrimePi[#^2 + #] - PrimePi[#]) & /@ Select[Prime@Range[3000], PrimeQ[#^2 + # + 1] &], PrimeQ] (* Giovanni Resta, Feb 27 2014 *)

Extensions

Corrected by Torlach Rush, Feb 26 2014
a(16)-a(28) from Giovanni Resta, Feb 27 2014

A243544 Primes p such that p^2 - p + 1 is semiprime.

Original entry on oeis.org

5, 11, 29, 37, 41, 43, 53, 61, 71, 73, 83, 97, 109, 113, 127, 137, 149, 157, 167, 181, 191, 211, 223, 229, 241, 271, 277, 281, 307, 317, 331, 359, 389, 421, 433, 443, 461, 463, 487, 499, 547, 557, 571, 587, 601, 617, 631, 659, 661, 683, 691, 701, 709, 733, 757
Offset: 1

Views

Author

K. D. Bajpai, Jun 06 2014

Keywords

Comments

Intersection of A000040 and A180748.

Examples

			11 is in the sequence because 11 is prime and 11^2 - 11 + 1 = 111 = 3 * 37 is semiprime.
29 is in the sequence because 29 is prime and 29^2 - 29 + 1 = 813 = 3 * 271 is semiprime.
17 is not in the sequence though 17 is prime, because 17^2 - 17 + 1 = 273 = 3 * 7 * 13, has more than two prime factors.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A243544 := proc() local a; a:=ithprime(n);  if bigomega(a^2-a+1)=2 then RETURN (a); fi; end: seq(A243544 (), n=1..200);
  • Mathematica
    c = 0; Do[k = Prime[n]; If[PrimeOmega[k^2 - k + 1] == 2, c++; Print[c, " ", k]], {n, 1, 30000}];
    Select[Prime[Range[150]],PrimeOmega[#^2-#+1]==2&] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    s=[]; forprime(p=2, 800, if(bigomega(p^2-p+1)==2, s=concat(s, p))); s \\ Colin Barker, Jun 06 2014

A290767 Primes p such that p^2 +/- p +/- 1 are all nonprimes.

Original entry on oeis.org

23, 37, 43, 73, 107, 109, 113, 137, 157, 179, 211, 223, 227, 229, 239, 251, 257, 271, 277, 283, 311, 313, 317, 347, 353, 367, 389, 439, 443, 467, 503, 509, 521, 523, 547, 557, 563, 577, 587, 593, 601, 631, 653, 661, 719, 733, 757, 797, 811, 821, 823, 829, 853, 859, 877, 883
Offset: 1

Views

Author

Ralf Steiner, Aug 10 2017

Keywords

Crossrefs

Programs

  • Maple
    select(p -> isprime(p) and not ormap(isprime, [p^2+p+1,p^2+p-1,p^2-p+1,p^2-p-1]), [2,seq(i,i=3..1000,2)]); # Robert Israel, Aug 10 2017
  • Mathematica
    Select[Prime[Range[1000]], ! (PrimeQ[#^2 + # + 1] || PrimeQ[#^2 + # - 1] ||PrimeQ[#^2 - # + 1] || PrimeQ[#^2 - # - 1]) &]
    Select[Prime[Range[200]],NoneTrue[{#^2+#+1,#^2+#-1,#^2-#+1,#^2-#-1},PrimeQ]&] (* Harvey P. Dale, Oct 13 2024 *)
  • PARI
    is(n) = my(v=[n^2+n+1, n^2+n-1, n^2-n+1, n^2-n-1]); for(k=1, #v, if(ispseudoprime(v[k]), return(0))); 1
    forprime(p=1, 900, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Aug 10 2017

Formula

Intersection of the complements of A053184, A053182, A065508, and A091567 within the primes A000040.

A325435 Numbers m such that m! / sigma(m) is an integer.

Original entry on oeis.org

1, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2019

Keywords

Comments

Complement of A325436.
Corresponding integers are 1, 20, 60, 630, 2688, 201600, 3326400, 17107200, ...
Equals A163162 without number 3.

Examples

			6 is in the sequence because 6! / sigma(6) = 720 / 12 = 60 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | IsIntegral(Factorial(n)/&+[d: d in Divisors(n)])]
    
  • Mathematica
    Select[Range[80],IntegerQ[#!/DivisorSigma[1,#]]&] (* Harvey P. Dale, Jul 20 2022 *)
  • PARI
    isok(n) = ((n! % sigma(n)) == 0); \\ Michel Marcus, Apr 26 2019

A325436 Numbers m such that m! / sigma(m) is not an integer.

Original entry on oeis.org

2, 3, 4, 9, 16, 25, 64, 289, 729, 1681, 2401, 3481, 4096, 5041, 7921, 10201, 15625, 17161, 27889, 28561, 29929, 65536, 83521, 85849, 146689, 262144, 279841, 458329, 491401, 531441, 552049, 579121, 597529, 683929, 703921, 707281, 734449, 829921, 1190281
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2019

Keywords

Comments

Numbers A053182(n)^2 are terms for n >= 1.
Complement of A325435.
Union of the number 3 and numbers m from A023194 (sigma(m) = prime).

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] | not IsIntegral(Factorial(n)/&+[d: d in Divisors(n)])]
    
  • PARI
    isok(n) = ((n! % sigma(n)) != 0); \\ Michel Marcus, Apr 26 2019

A224781 Primes p such that both 2*p + 1 and p^2 + p + 1 are primes.

Original entry on oeis.org

2, 3, 5, 41, 89, 131, 173, 293, 743, 761, 911, 1559, 1583, 1811, 1931, 1973, 2129, 2273, 2339, 2969, 3449, 3491, 4409, 4733, 5003, 5039, 5501, 6173, 6551, 6761, 7883, 7901, 8093, 8741, 9059, 9689, 10589, 10781, 11171, 11549, 13229, 13553, 14939, 15569
Offset: 1

Views

Author

Jayanta Basu, Apr 17 2013

Keywords

Comments

Intersection of A005384 and A053182.
Note that 2p+1 is the derivative of p^2+p+1 with respect to p. - T. D. Noe, Apr 18 2013

Examples

			5 is a member since 5+6=11 and 5*6+1=31 are both primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1850]], PrimeQ[2*# + 1] && PrimeQ[#^2 + # + 1] &]
Previous Showing 31-38 of 38 results.