cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A053246 First differences of chowla(n).

Original entry on oeis.org

0, 0, 2, -2, 5, -5, 6, -3, 4, -7, 15, -15, 9, -1, 6, -14, 20, -20, 21, -11, 3, -13, 35, -30, 10, -3, 15, -27, 41, -41, 30, -16, 5, -7, 42, -54, 21, -5, 33, -49, 53, -53, 39, -7, -7, -25, 75, -68, 35, -22, 25, -45, 65, -49, 47, -41, 9, -31, 107, -107, 33, 7, 22, -44, 59, -77, 57, -31
Offset: 1

Views

Author

Asher Auel, Jan 10 2000

Keywords

Comments

Second differences give A053223, for n>1.
If the first term is changed to 1, this is also the first differences of A001065. - N. J. A. Sloane, Jan 17 2023

Crossrefs

Cf. also A001065.

Programs

  • Magma
    [0] cat [DivisorSigma(1,n+1) - DivisorSigma(1,n) - 1: n in [2..100]]; // G. C. Greubel, Sep 03 2018
    
  • Maple
    with(numtheory): seq( sigma(i+1) - sigma(i) - 1, i=2..100); # for n>1
  • Mathematica
    Chowlan[n_] := If[n == 1, 0, DivisorSigma[1, n] - n - 1]; Table[Chowlan[n + 1] - Chowlan[n], {n, 1, 100}] (* G. C. Greubel, Sep 03 2018 *)
    Differences[Join[{0},Table[DivisorSigma[1,n]-n-1,{n,2,100}]]] (* Harvey P. Dale, Dec 19 2022 *)
  • PARI
    concat([0], vector(100, n, n++; sigma(n+1) - sigma(n) -1)) \\ G. C. Greubel, Sep 03 2018

Formula

a(n) = A053222(n) - 1, for n>1

A072611 Numbers k such that phi(k) divides sigma(k+1) - sigma(k).

Original entry on oeis.org

1, 2, 6, 14, 30, 40, 70, 140, 170, 174, 206, 215, 238, 390, 459, 518, 923, 957, 1334, 1364, 1540, 1634, 2685, 2974, 4364, 5180, 5934, 6048, 6467, 6510, 6623, 8028, 8094, 8260, 8814, 12136, 12954, 14099, 14841, 15416, 16472, 17094, 17835, 17927, 18873
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[20000],Divisible[DivisorSigma[1,#+1]-DivisorSigma[1,#], EulerPhi[#]]&] (* Harvey P. Dale, Sep 15 2011 *)

Formula

Conjecture : Limit_{n -> infinity} log(a(n))/log(n) exists and = 2.6... .

A227307 Numbers k that divide sigma(k) - sigma(k-1).

Original entry on oeis.org

2, 6, 15, 19, 207, 958, 1335, 1365, 1635, 2686, 2975, 3201, 4365, 4536, 8586, 14842, 16120, 18874, 19359, 20146, 24958, 33999, 36567, 42819, 53580, 56565, 64666, 74919, 79827, 79834, 84135, 92686, 109215, 111507, 116938, 122074, 138238, 147455, 161002, 162603, 166935
Offset: 1

Views

Author

Alex Ratushnyak, Jul 05 2013

Keywords

Crossrefs

A231546 is a subsequence.

Programs

  • Mathematica
    With[{m = 200000}, 1 + Position[Differences[DivisorSigma[1, Range[m]]]/Range[2, m], ?IntegerQ] // Flatten] (* _Amiram Eldar, Dec 31 2024 *)
  • PARI
    list(lim) = {my(s1 = 1, s2); for(k = 2, lim, s2 = sigma(k); if(!((s2-s1) % k), print1(k, ", ")); s1 = s2);} \\ Amiram Eldar, Dec 31 2024

A248211 First differences of omega(n), the number of distinct prime factors function (A001221).

Original entry on oeis.org

1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -1, 1, 0, -1, 0, 1, -1, 1, 0, 0, -1, 1, -1, 1, -1, 1, -1, 2, -2, 0, 1, 0, 0, 0, -1, 1, 0, 0, -1, 2, -2, 1, 0, 0, -1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, -1, 2, -2, 1, 0, -1, 1, 1, -2, 1, 0, 1, -2, 1, -1, 1, 0, 0, 0, 1, -2, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 04 2014

Keywords

Comments

First instance of abs(a(n)) > 2 is for n = 210. - Alonso del Arte, Oct 05 2014

Crossrefs

Cf. A001221 (omega).
Cf. A053222: first differences of sigma(n) = A000203.
Cf. A076191: first differences of bigomega(n) = A001222.
Cf. A127440: first differences of mobius(n) = A008683.

Programs

  • Maple
    with(numtheory): A248211:=n->nops(factorset(n+1))-nops(factorset(n)): seq(A248211(n), n=1..100);
  • Mathematica
    Table[PrimeNu[n + 1] - PrimeNu[n], {n, 100}] (* Hurt *)
    Differences[PrimeNu[Range[100]]] (* Alonso del Arte, Oct 04 2014 *)
  • PARI
    a(n) = omega(n+1) - omega(n); \\ Michel Marcus, Dec 29 2022

Formula

a(n) = omega(n+1) - omega(n) = A001221(n+1) - A001221(n).
G.f.: (1 - x)*Sum_{k>=1} x^(prime(k)-1)/(1 - x^prime(k)). - Ilya Gutkovskiy, Mar 15 2017

A227305 Numbers n such that sigma(n) - sigma(n-1) divides n.

Original entry on oeis.org

2, 3, 5, 6, 10, 19, 52, 118, 1054, 3201, 8586, 9802, 16120, 60556, 140698, 145216, 11273536, 29886160, 44868748, 8748377956, 325377469696, 2368739714188
Offset: 1

Views

Author

Alex Ratushnyak, Jul 05 2013

Keywords

Comments

a(23) > 2.5*10^12. - Giovanni Resta, Jul 13 2013

Crossrefs

Extensions

a(21)-a(22) from Giovanni Resta, Jul 13 2013

A333041 Odd numbers m such that sigma(m) > sigma(m-1).

Original entry on oeis.org

3, 63, 75, 135, 147, 195, 255, 315, 399, 405, 459, 483, 495, 525, 555, 567, 615, 627, 663, 675, 693, 735, 759, 765, 795, 819, 855, 915, 945, 975, 999, 1035, 1095, 1125, 1155, 1215, 1239, 1287, 1323, 1395, 1455, 1515, 1539, 1575, 1647, 1659, 1683, 1755, 1785, 1815, 1827, 1845, 1875
Offset: 1

Views

Author

Bernard Schott, Apr 14 2020

Keywords

Comments

The odd terms of A333038 [sigma(m) <= sigma(m-1)] represent about 95% of the data, so the odd integers that do not satisfy this relation are proposed here.
Except for 3, there are no prime powers in this sequence.
It appears that most of the terms are divisible by 3; the two smallest exceptions are 13475 and 17255 (see A323726).
Odd (and even) numbers such that sigma(m) = sigma(m-1) are in A231546.

Examples

			sigma(63) = 1+3+7+9+21+63 = 104 > sigma(62) = 1+2+31+62=96 and 63 is in the sequence.
sigma(77) = 1+7+11+77 = 96 < sigma(76) = 1+2+4+19+38+76 = 140 and 77 is not a term.
		

Crossrefs

A323726 is a subsequence.
Apart from the first term, a subsequence of A334117.

Programs

  • Mathematica
    Select[2 * Range[1000] + 1, DivisorSigma[1, #] > DivisorSigma[1, # - 1] &] (* Amiram Eldar, Apr 14 2020 *)
  • PARI
    is(n)=n%2 && sigma(n)>sigma(n-1) \\ Charles R Greathouse IV, Apr 14 2020
Previous Showing 11-16 of 16 results.