A230539
a(n) = 3*n*2^(3*n-1).
Original entry on oeis.org
0, 12, 192, 2304, 24576, 245760, 2359296, 22020096, 201326592, 1811939328, 16106127360, 141733920768, 1236950581248, 10720238370816, 92358976733184, 791648371998720, 6755399441055744, 57420895248973824, 486388759756013568, 4107282860161892352
Offset: 0
-
[3*n*2^(3*n-1): n in [0..20]];
-
A230539:=n->3*n*2^(3*n-1): seq(A230539(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
-
Table[3 n 2^(3 n - 1), {n,0,20}]
LinearRecurrence[{16,-64},{0,12},20] (* Harvey P. Dale, Dec 25 2022 *)
-
a(n) = 3*n*2^(3*n-1); \\ Michel Marcus, Oct 23 2013
A230540
a(n) = 2*n*3^(2*n-1).
Original entry on oeis.org
0, 6, 108, 1458, 17496, 196830, 2125764, 22320522, 229582512, 2324522934, 23245229340, 230127770466, 2259436291848, 22029503845518, 213516729579636, 2058911320946490, 19765548681086304, 189008059262887782, 1801135623563989452, 17110788423857899794
Offset: 0
-
[2*n*3^(2*n-1): n in [0..20]];
-
Table[2 n 3^(2 n - 1), {n, 0, 20}]
-
a(n) = 2*n*3^(2*n-1); \\ Michel Marcus, Oct 23 2013
A305837
Triangle read by rows: T(0,0) = 1; T(n,k) = 5*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 5, 25, 1, 125, 10, 625, 75, 1, 3125, 500, 15, 15625, 3125, 150, 1, 78125, 18750, 1250, 20, 390625, 109375, 9375, 250, 1, 1953125, 625000, 65625, 2500, 25, 9765625, 3515625, 437500, 21875, 375, 1, 48828125, 19531250, 2812500, 175000, 4375, 30, 244140625, 107421875, 17578125, 1312500, 43750, 525, 1
Offset: 0
Triangle begins:
1;
5;
25, 1;
125, 10;
625, 75, 1;
3125, 500, 15;
15625, 3125, 150, 1;
78125, 18750, 1250, 20;
390625, 109375, 9375, 250, 1;
1953125, 625000, 65625, 2500, 25;
9765625, 3515625, 437500, 21875, 375, 1;
48828125, 19531250, 2812500, 175000, 4375, 30;
244140625, 107421875, 17578125, 1312500, 43750, 525, 1;
1220703125, 585937500, 107421875, 9375000, 393750, 7000, 35;
6103515625, 3173828125, 644531250, 64453125, 3281250, 78750, 700, 1;
30517578125, 17089843750, 3808593750, 429687500, 25781250, 787500, 10500, 40;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 92, 380, 382.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 5 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
A173113
a(n) = binomial(n + 10, 10) * 5^n.
Original entry on oeis.org
1, 55, 1650, 35750, 625625, 9384375, 125125000, 1519375000, 17092968750, 180425781250, 1804257812500, 17222460937500, 157872558593750, 1396564941406250, 11970556640625000, 99754638671875000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (55,-1375,20625,-206250,1443750,-7218750,25781250,-64453125,107421875,-107421875,48828125).
-
[5^n*Binomial(n+10, 10): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
Table[Binomial[n + 10, 10]*5^n, {n, 0, 20}]
A320531
T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, 14, ... A005843
0, 3, 12, 27, 48, 75, 108, 147, ... A033428
0, 4, 32, 108, 256, 500, 864, 1372, ... A033430
0, 5, 80, 405, 1280, 3125, 6480, 12005, ... A269792
0, 6, 192, 1458, 6144, 18750, 46656, 100842, ...
0, 7, 448, 5103, 28672, 109375, 326592, 823543, ...
...
T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
-
T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$
Comments