cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A301655 a(n) = [x^n] 1/(1 - Sum_{k>=1} k^n*x^k).

Original entry on oeis.org

1, 1, 5, 44, 723, 24655, 1715816, 239697569, 69557364821, 41297123651644, 49900451628509015, 125141540794392423599, 641579398300246011553552, 6729809577032172543373047313, 146355880526667013027682326650073, 6505380999057202235872595196799580684
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 25 2018

Keywords

Comments

Number of compositions (ordered partitions) of n where there are k^n sorts of part k.
a(n) is the n-th term of invert transform of n-th powers.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[k^n x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 15}]
    Table[SeriesCoefficient[1/(1 - PolyLog[-n, x]), {x, 0, n}], {n, 0, 15}]

Formula

a(n) = [x^n] 1/(1 - PolyLog(-n,x)), where PolyLog() is the polylogarithm function.
From Vaclav Kotesovec, Mar 27 2018: (Start)
a(n) ~ 3^(n^2/3) if mod(n,3)=0
a(n) ~ 3^(n*(n-4)/3-2)*2^(2*n-1)*(n-1)*(n+8) if mod(n,3)=1
a(n) ~ 3^((n+1)*(n-3)/3)*2^n*(n+1) if mod(n,3)=2
(End)

A369016 Triangle read by rows: T(n, k) = binomial(n - 1, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k - 1).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 6, 2, 0, 0, 48, 18, 12, 0, 0, 500, 192, 144, 108, 0, 0, 6480, 2500, 1920, 1620, 1280, 0, 0, 100842, 38880, 30000, 25920, 23040, 18750, 0, 0, 1835008, 705894, 544320, 472500, 430080, 393750, 326592, 0
Offset: 0

Views

Author

Peter Luschny, Jan 12 2024

Keywords

Examples

			Triangle starts:
  [0] [0]
  [1] [0,       0]
  [2] [0,       1,      0]
  [3] [0,       6,      2,      0]
  [4] [0,      48,     18,     12,      0]
  [5] [0,     500,    192,    144,    108,      0]
  [6] [0,    6480,   2500,   1920,   1620,   1280,      0]
  [7] [0,  100842,  38880,  30000,  25920,  23040,  18750,      0]
  [8] [0, 1835008, 705894, 544320, 472500, 430080, 393750, 326592, 0]
		

Crossrefs

A368849, A368982 and this sequence are alternative sum representation for A001864 with different normalizations.
T(n, k) = A368849(n, k) / n for n >= 1.
T(n, 1) = A053506(n) for n >= 1.
T(n, n - 1) = A055897(n - 1) for n >= 2.
Sum_{k=0..n} T(n, k) = A000435(n) for n >= 1.
Sum_{k=0..n} (-1)^(k+1)*T(n, k) = A368981(n) / n for n >= 1.

Programs

  • Maple
    T := (n, k) -> binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1):
    seq(seq(T(n, k), k = 0..n), n=0..9);
  • Mathematica
    A369016[n_, k_] := Binomial[n-1, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k-1); Table[A369016[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
  • SageMath
    def T(n, k): return binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1)
    for n in range(0, 9): print([T(n, k) for k in range(n + 1)])

Formula

T = B066320 - A369017 (where B066320 = A066320 after adding a 0-column to the left and then setting offset to (0, 0)).

A203423 a(n) = w(n+1)/(2*w(n)), where w=A203422.

Original entry on oeis.org

-3, 24, -250, 3240, -50421, 917504, -19131876, 450000000, -11789738455, 340545503232, -10752962364222, 368510430439424, -13623365478515625, 540431955284459520, -22899384412078526344, 1032236014321051140096, -49323481720063219673451, 2490368000000000000000000, -132484966403310261255807810
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(-1)^n*(n+1)*(n+2)^n/2: n in [1..20]]; // G. C. Greubel, Dec 07 2023
    
  • Mathematica
    (* First program *)
    f[j_] := 1/(j + 1); z = 16;
    v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
    1/Table[v[n], {n, 1, z}]             (* A203422 *)
    Table[v[n]/(2 v[n + 1]), {n, 1, z}]  (* this sequence *)
    (* Second program *)
    Table[(-1)^n*(n+1)*(n+2)^n/2, {n,20}] (* G. C. Greubel, Dec 07 2023 *)
  • SageMath
    [(-1)^n*(n+1)*(n+2)^n/2 for n in range(1,21)] # G. C. Greubel, Dec 07 2023

Formula

a(n) = (-1)^n*A053506(n+2)/2. - Steven Finch, Apr 16 2022
E.g.f.: -(1/(2*x^2))*( W(x)/(1 + W(x))^3 - 2*W(x)/(1 + W(x)) + W(x) + x^2), where W(x) = LambertW(x). - G. C. Greubel, Dec 07 2023

A103690 Triangle read by rows: T(n,k)=binomial(n,k-1)*k^(k-1)*(n+1-k)^(n-k) (1<=k<=n).

Original entry on oeis.org

1, 2, 4, 9, 12, 27, 64, 72, 108, 256, 625, 640, 810, 1280, 3125, 7776, 7500, 8640, 11520, 18750, 46656, 117649, 108864, 118125, 143360, 196875, 326592, 823543, 2097152, 1882384, 1959552, 2240000, 2800000, 3919104, 6588344, 16777216, 43046721
Offset: 1

Views

Author

Emeric Deutsch, Mar 27 2005

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(p.27, Problem 1.2.6 (b)).

Crossrefs

Row sums yield A053506. T(n, 1)=A000169(n). T(n, n)=A000312(n).

Programs

  • Maple
    T:=proc(n,k) if k<=n then binomial(n,k-1)*k^(k-1)*(n+1-k)^(n-k) else 0 fi end: for n from 1 to 9 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form

Formula

T(n, k)=binomial(n, k-1)*k^(k-1)*(n+1-k)^(n-k) (1<=k<=n).

A206855 The sum of the degree of each root node over all rooted labeled trees on n nodes.

Original entry on oeis.org

0, 0, 2, 12, 96, 1000, 12960, 201684, 3670016, 76527504, 1800000000, 47158953820, 1362182012928, 43011849456888, 1474041721757696, 54493461914062500, 2161727821137838080, 91597537648314105376, 4128944057284204560384, 197293926880252878693804, 9961472000000000000000000
Offset: 0

Views

Author

Geoffrey Critzer, Feb 13 2012

Keywords

Comments

The mean root degree approaches 2 as n -> infinity.

Programs

  • Mathematica
    nn=15;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];D[ Range[0,nn]!CoefficientList[Series[x Exp[y t],{x,0,nn}],x],y]/.y->1

Formula

a(n) = Sum_{k=0..n} A206429(n,k)*k.
E.g.f.: T(x)^2 where T(x) is the e.g.f. for A000169.
a(n) = 2*(n^(n-1) - n^(n-2)).
a(n) = 2*A053506(n). - R. J. Mathar, Nov 07 2014

Extensions

a(10) corrected by Georg Fischer, Mar 23 2023
Previous Showing 21-25 of 25 results.