cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A259251 a(n) = 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6.

Original entry on oeis.org

7, 1093, 5461, 137257, 55987, 3257437, 299593, 12204241, 5229043, 36012943, 3257437, 499738093, 8108731, 199411801, 199411801, 917087137, 36012943, 3611342281, 67368421, 5622910567, 1108378657, 2238976117, 199411801, 47446779661, 917087137, 5622910567
Offset: 1

Views

Author

Robert Price, Jun 22 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A259252 (indices of primes in this sequence), A259253 (corresponding primes).

Programs

  • Magma
    [1 + SumOfDivisors(n) + SumOfDivisors(n)^2 + SumOfDivisors(n)^3 + SumOfDivisors(n)^4 + SumOfDivisors(n)^5 + SumOfDivisors(n)^6: n in [1..50]]; // Vincenzo Librandi, Jun 26 2015
  • Maple
    with(numtheory): A259251:=n->1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6: seq(A259251(n), n=1..50); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4 + DivisorSigma[1, n]^5 + DivisorSigma[1, n]^6, {n, 10000}]
    Table[Cyclotomic[7, DivisorSigma[1, n]], {n, 10000}]
    f[n_] := Total[DivisorSigma[1, n]^Range[0, 6]]; Array[f, 26] (* Robert G. Wilson v *)
  • PARI
    vector(30, n, polcyclo(7, sigma(n))) \\ Michel Marcus, Jun 23 2015
    

Formula

a(n) = 1 + A000203(n) + A000203(n)^2 + A000203(n)^3 + A000203(n)^4 + A000203(n)^5 + A000203(n)^6.
a(n) = A053716(A000203(n)). - Michel Marcus, Jun 23 2015

A258808 a(n) = n^7 - 1.

Original entry on oeis.org

0, 127, 2186, 16383, 78124, 279935, 823542, 2097151, 4782968, 9999999, 19487170, 35831807, 62748516, 105413503, 170859374, 268435455, 410338672, 612220031, 893871738, 1279999999, 1801088540, 2494357887, 3404825446, 4586471423, 6103515624, 8031810175
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A181126.
Cf. A258806.
Cf. similar sequences listed in A258807.

Programs

  • Magma
    [n^7-1: n in [1..40]];
    
  • Magma
    I:=[0,127,2186,16383, 78124,279935,823542,2097151]; [n le 8 select I[n] else 8*Self(n-1) - 28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5) - 28*Self(n-6) +8*Self(n-7)-Self(n-8): n in [1..40]];
    
  • Mathematica
    Table[n^7 - 1, {n, 1, 40}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 127, 2186, 16383, 78124, 279935, 823542, 2097151}, 40]
  • Sage
    [n^7-1 for n in (1..40)] # Bruno Berselli, Jun 11 2015

Formula

G.f.: x^2*(127 + 1170*x + 2451*x^2 + 1156*x^3 + 141*x^4 - 6*x^5 + x^6)/(1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
a(n) = -A024005(n). [Bruno Berselli, Jun 11 2015]
a(n) = (n-1)*A053716(n). - Michel Marcus, Aug 21 2015

A288939 Nonprime numbers k such that k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 is prime.

Original entry on oeis.org

1, 6, 14, 26, 38, 40, 46, 56, 60, 66, 68, 72, 80, 87, 93, 95, 115, 122, 126, 128, 146, 156, 158, 160, 180, 186, 192, 203, 206, 208, 220, 221, 235, 237, 238, 264, 266, 280, 282, 290, 294, 300, 303, 320, 341, 350, 363, 381, 395, 399, 404, 405, 417, 418, 436, 438, 447, 450
Offset: 1

Views

Author

Bernard Schott, Jun 19 2017

Keywords

Comments

A163268 Union {This sequence} = A100330.
The corresponding prime numbers k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 = 1111111_k are in A194194; all these Brazilian primes belong to A085104 and A285017.

Examples

			6 is in the sequence because 6^6 + 6^5 + 6^4 + 6^3 + 6^2 + 6 + 1 = 1111111_6 = 55987 which is prime.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 200 do s(n):= 1+n+n^2+n^3+n^4+n^5+n^6;
    if not isprime(n) and isprime(s(n)) then print(n,s(n)) else fi; od:
  • Mathematica
    Select[Range@ 450, And[! PrimeQ@ #, PrimeQ@ Total[#^Range[0, 6]]] &] (* Michael De Vlieger, Jun 19 2017 *)
  • PARI
    isok(n) = !isprime(n) && isprime(1+n+n^2+n^3+n^4+n^5+n^6); \\ Michel Marcus, Jun 19 2017
    
  • Python
    from sympy import isprime
    A288939_list = [n for n in range(10**3) if not isprime(n) and isprime(n*(n*(n*(n*(n*(n + 1) + 1) + 1) + 1) + 1) + 1)] # Chai Wah Wu, Jul 13 2017

A237364 Numbers n of the form n=Phi(7,p) (for prime p) such that Phi(7,n) is also prime.

Original entry on oeis.org

616067011, 58749951412747, 93054242152309543, 146945091162352770847, 2224989620406870255043, 43184085337135904888293, 53224134341571172990843, 109539169818149034933067, 308295173856880401026941, 6197901576526752380316343, 14789135287218506962379317
Offset: 1

Views

Author

Derek Orr, Feb 06 2014

Keywords

Comments

Phi(7,x) =1+x+x^2+x^3+x^4+x^5+x^6 =A053716(x) is the 7th cyclotomic polynomial.

Examples

			616067011 = 29^6+29^5+29^4+29^3+29^2+29+1 (29 is prime) and 616067011^6+616067011^5+616067011^4+616067011^3+616067011^2+616067011+1 = 54672347801779330810964871392077416495507203132755717 is prime. Thus, 616067011 is a member of this sequence.
		

Crossrefs

Cf. A088550.

Programs

  • Maple
    for k from 1 do
        p := ithprime(k) ;
        n := numtheory[cyclotomic](7,p) ;
        pn := numtheory[cyclotomic](7,n) ;
        if isprime( pn) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Feb 07 2014
  • Python
    import sympy
    from sympy import isprime
    {print(n**6+n**5+n**4+n**3+n**2+n+1) for n in range(10**5) if isprime(n) and isprime((n**6+n**5+n**4+n**3+n**2+n+1)**6+(n**6+n**5+n**4+n**3+n**2+n+1)**5+(n**6+n**5+n**4+n**3+n**2+n+1)**4+(n**6+n**5+n**4+n**3+n**2+n+1)**3+(n**6+n**5+n**4+n**3+n**2+n+1)**2+(n**6+n**5+n**4+n**3+n**2+n+1)+1)}

A261128 Cyclotomic polynomial value Phi(7,n!).

Original entry on oeis.org

7, 7, 127, 55987, 199411801, 3011076302521, 139507830379527121, 16393413624509530430641, 4296688920209982460579470721, 2283386315992292963858620174289281, 2283380652830226414943490202201665068801, 4045147099313653802803680147635052518194156801
Offset: 0

Views

Author

Robert Price, Aug 20 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Cyclotomic[7, n!], {n, 0, 200}]
  • PARI
    a(n) = polcyclo(7, n!) \\ Michel Marcus, Aug 22 2015

Formula

a(n) = A053716(n!) for n>0.

A326618 a(n) = n^18 + n^9 + 1.

Original entry on oeis.org

1, 3, 262657, 387440173, 68719738881, 3814699218751, 101559966746113, 1628413638264057, 18014398643699713, 150094635684419611, 1000000001000000001, 5559917315850179173, 26623333286045024257, 112455406962561892503, 426878854231297789441, 1477891880073843750001
Offset: 0

Views

Author

Richard N. Smith, Jul 15 2019

Keywords

Comments

a(n) = Phi_27(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=2), A002061 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), A269442 (k=17), A060891 (k=18), A269446 (k=19), A060892 (k=20), A269483 (k=21), A269486 (k=22), A060893 (k=24), A269527 (k=25), A266229 (k=26), this sequence (k=27), A270204 (k=28), A060894 (k=30), A060895 (k=32), A060896 (k=36).
Cf. A153440 (indices of prime terms).

Programs

  • Magma
    [n^18+n^9+1: n in [0..17]]; // Vincenzo Librandi, Jul 15 2019
    
  • Mathematica
    Table[n^18 + n^9 + 1, {n, 0, 17}] (* Vincenzo Librandi, Jul 15 2019 *)
    Table[Cyclotomic[27, n], {n, 0, 17}]
  • PARI
    a(n) = polcyclo(27, n); \\ Michel Marcus, Jul 20 2019

A261487 Primes of the form Phi(7,n!), where Phi is the cyclotomic polynomial.

Original entry on oeis.org

7, 127, 55987, 58301791288260114251803544692993535976160443849938371660801
Offset: 1

Views

Author

Robert Price, Aug 20 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Cyclotomic[7, n!], {n, 0, 200}], PrimeQ]
Previous Showing 11-17 of 17 results.