cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A054751 Number of inequivalent n X n matrices over GF(4) under action of dihedral group of the square D_4.

Original entry on oeis.org

1, 4, 55, 34960, 537157696, 140738033618944, 590295811483987148800, 39614081257168338331296071680, 42535295865117309120430975675097153536, 730750818665451459102461990840694008379514814464, 200867255532373784442745261867639247948787687313041365401600
Offset: 0

Views

Author

Vladeta Jovovic, May 15 2000

Keywords

Crossrefs

Column k=4 of A343097.
Cf. A054247.

Programs

  • Mathematica
    Table[If[EvenQ[n],(4^n^2+2*4^(n^2/4)+3*4^(n^2/2)+2*4^((n^2+n)/2))/8,(4^n^2+2*4^((n^2+3)/4)+4^((n^2+1)/2)+4*4^((n^2+n)/2))/8],{n,0,10}] (* Harvey P. Dale, Aug 16 2021 *)

Formula

a(n) = 1/8*(4^(n^2) + 2*4^(n^2/4) + 3*4^(n^2/2) + 2*4^((n^2+n)/2)) if n is even;
a(n) = 1/8*(4^(n^2) + 2*4^((n^2+3)/4) + 4^((n^2+1)/2) + 4*4^((n^2+n)/2)) if n is odd.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Apr 15 2021

A054752 Number of inequivalent n X n matrices over GF(5) under action of dihedral group of the square D_4.

Original entry on oeis.org

1, 5, 120, 252375, 19076074375, 37252918396015625, 1818989403666496277343750, 2220446049250331744551658935546875, 67762635780344027129112510010600128173828125, 51698788284564229679463057470911735435947895050048828125
Offset: 0

Views

Author

Vladeta Jovovic, May 15 2000

Keywords

Crossrefs

Column k=5 of A343097.
Cf. A054247.

Formula

a(n) = 1/8*(5^(n^2) + 2*5^(n^2/4) + 3*5^(n^2/2) + 2*5^((n^2+n)/2)) if n is even;
a(n) = 1/8*(5^(n^2) + 2*5^((n^2+3)/4) + 5^((n^2+1)/2) + 4*5^((n^2+n)/2)) if n is odd.

Extensions

Terms a(9) and beyond from Andrew Howroyd, Apr 15 2021

A367524 The number of ways of tiling the n X n grid up to the symmetries of the square by a tile that is fixed under horizontal reflection, but no other symmetries of the square.

Original entry on oeis.org

1, 39, 32896, 536895552, 140737496743936, 590295810384475521024, 39614081257132309534260330496, 42535295865117307939839354957685850112, 730750818665451459101843020821051317142553624576, 200867255532373784442745261543120694290360960529885344825344
Offset: 1

Views

Author

Peter Kagey, Dec 10 2023

Keywords

Comments

Also, this is the number ways of tiling the n X n grid up to the symmetries of the square by a tile that is fixed under 180-degree rotation, but no other symmetries of the square.

Crossrefs

Programs

  • Mathematica
    Table[{2^(4 m^2 - 4 m - 2) (2 + 2^(2 m - 1)^2), 2^(2 m^2 - 3) (2 + 3*4^m^2 + 64^m^2)}, {m, 1, 5}] // Flatten

Formula

a(2m-1) = 2^(4m^2 - 4m - 2)*(2 + 2^(2m-1)^2).
a(2m) = 2^(2m^2 - 3)*(2 + 3*4^m^2 + 64^m^2).

A286392 Number of inequivalent n X n matrices over an alphabet of size 6 under action of dihedral group of the square D_4.

Original entry on oeis.org

1, 6, 231, 1284066, 352654485156, 3553786240466361696, 1289303099816839265917858176, 16839193280515921004090301582258640896, 7917535832871659713272867459049024690729209839616
Offset: 0

Views

Author

María Merino, Imanol Unanue, Yosu Yurramendi, May 08 2017

Keywords

Comments

Computed using Burnside's orbit-counting lemma.

Crossrefs

Column k=6 of A343097.

Programs

  • Mathematica
    Table[1/8*(6^(n^2) + 2*6^((n^2 + 3 #)/4) + (3 - 2 #)*6^((n^2 + #)/2) + (2 + 2 #)*6^((n^2 + n)/2)) &@ Boole[OddQ@ n], {n, 10}] (* Michael De Vlieger, May 08 2017 *)

Formula

a(n) = (1/8)*(6^(n^2) + 2*6^(n^2/4) + 3*6^(n^2/2) + 2*6^((n^2 + n)/2)) if n is even;
a(n) = (1/8)*(6^(n^2) + 2*6^((n^2 + 3)/4) + 6^((n^2 + 1)/2) + 4*6^((n^2 + n)/2)) if n is odd.

A367525 The number of ways of tiling the n X n grid up to the symmetries of the square by a tile that is not fixed under any of the symmetries of the square.

Original entry on oeis.org

1, 538, 16777216, 35184378381312, 4722366482869645213696, 40564819207303347603293977182208, 22300745198530623141535718272648361505980416, 784637716923335095479473677930668862955643627524327473152, 1766847064778384329583297500742918515827483896875618958121606201292619776
Offset: 1

Views

Author

Peter Kagey, Dec 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[{4096^(m^2 - m), 8^(m^2 - 1) (512^m^2 + 3*8^m^2 + 2)}, {m, 1, 5}] // Flatten

Formula

a(2m-1) = 4096^(m^2 - m).
a(2m) = 8^(m^2 - 1)*(512^m^2 + 3*8^m^2 + 2).

A082966 Number of inequivalent ways (mod D_4) three checkers can be placed on an n X n board.

Original entry on oeis.org

0, 1, 16, 77, 319, 920, 2397, 5278, 10874, 20355, 36390, 61171, 99441, 154882, 235179, 346060, 499172, 702933, 974124, 1324585, 1777555, 2349116, 3070441, 3962762, 5066814, 6409975, 8044322, 10004463, 12355749, 15141190, 18441495, 22309336, 26843016, 32106217
Offset: 1

Views

Author

Vladeta Jovovic, May 27 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x^2*(x^8 - x^7 - 4 x^6 - 55 x^5 - 56 x^4 - 83 x^3 - 28 x^2 - 13 x - 1)/((x - 1)^7*(x + 1)^4), {x, 0, 34}], x] (* Michael De Vlieger, Oct 03 2016 *)

Formula

a(n) = (1/48)*(n-1)*(n^5+n^4-2*n^3+14*n^2-5*n+3) if n is odd;
a(n) = (1/48)*n*(n-1)*(n^2-n+2)*(n^2+2*n-2) if n is even.
G.f.: x^2*(x^8-x^7-4*x^6-55*x^5-56*x^4-83*x^3-28*x^2-13*x-1) / ((x-1)^7*(x+1)^4). - Colin Barker, Jul 11 2013
a(n) = A054247(n, 3) = A054247(n, n^2-3), n >= 1. - Wolfdieter Lang, Oct 03 2016
E.g.f.: (x*(3 + 24*x + 88*x^2 + 62*x^3 + 15*x^4 + x^5)*cosh(x) + (-3 + 39*x^2 + 80*x^3 + 62*x^4 + 15*x^5 + x^6)*sinh(x))/48. - Stefano Spezia, Apr 14 2022

Extensions

More terms from Colin Barker, Jul 11 2013

A268404 Number of fixed polyominoes that have a width and height of n.

Original entry on oeis.org

1, 5, 111, 7943, 1890403, 1562052227, 4617328590967, 49605487608825311, 1951842619769780119767, 282220061839181920696642671, 150134849621798165832163223922131, 293909551918134914019004192289440616787, 2116817972794640259940977362779552773322908743
Offset: 1

Views

Author

Craig Knecht, Feb 03 2016

Keywords

Comments

Iwan Jensen originally provided this sequence.
The sequence also describes the water patterns of lakes in the water retention model.
A lake is defined as a body of water with dimensions of n X n when the size of the square is (n+2) X (n+2). All other bodies of water are ponds.
The 3 X 3 square serves as a tutorial for the following three nomenclatures: (1) The total number of distinct water patterns is 102 and includes lakes and ponds. (2) The number of free lake-type polyominoes is 24. (3) The number of fixed lake-type polyominoes is 111. See the explanatory graphics in the link section.
John Mason has looked at free polyominoes in rectangles; see A268371.
Anna Skelt initiated the discussion on the definition of a lake.

Examples

			There are many interesting ways to connect all boundaries of the square with the smallest number of edge-joined cells.
  0 0 0 0 1 0
  0 0 0 0 1 1
  0 0 1 1 1 0
  0 0 1 0 0 0
  1 1 1 0 0 0
  0 1 0 0 0 0
		

Crossrefs

Main diagonal of A292357.
Cf. A054247 (all unique water retention patterns for an n X n square), A268311 (free polyominoes that connect all boundaries on a square), A268339 (lake patterns that are invariant to all transformations).

Programs

Extensions

a(12)-a(13) from Andrew Howroyd, Oct 02 2017

A286393 Number of inequivalent n X n matrices over GF(7) under action of dihedral group of the square D_4.

Original entry on oeis.org

1, 7, 406, 5105212, 4154189102413, 167633579843887699759, 331466355732596931093508048522, 32115447190132359991237336502881651018804, 152470060954479462517322396167243320349298407119379801
Offset: 0

Views

Author

María Merino, Imanol Unanue, Yosu Yurramendi, May 08 2017

Keywords

Comments

Burnside's orbit-counting lemma

Crossrefs

Column k=7 of A343097.

Formula

a(n) = (1/8)*(7^(n^2) + 2*7^(n^2/4) + 3*7^(n^2/2) + 2*7^((n^2 + n)/2)) if n is even;
a(n) = (1/8)*(7^(n^2) + 2*7^((n^2 + 3)/4) + 7^((n^2 + 1)/2) + 4*7^((n^2 + n)/2)) if n is odd.

A295229 Number of tilings of the n X n grid, using diagonal lines to connect the grid points.

Original entry on oeis.org

1, 6, 84, 8548, 4203520, 8590557312, 70368815480832, 2305843028004192256, 302231454912728264605696, 158456325028538104598816096256, 332306998946228986960926214931349504, 2787593149816327892769293535238052808491008
Offset: 1

Views

Author

Peter Kagey, Nov 18 2017

Keywords

Comments

The grids are counted up to reflection and rotation.
a(n) <= A295223(n).

Examples

			For n = 2, the a(2) = 6 tilings are:
//, \/, /\, \\, /\, and \/.
//  //  //  //  \/      /\
		

Crossrefs

Programs

  • Mathematica
    Array[(2^(#^2) + 2*2^(# (# + 1)/2) + If[EvenQ@ #, 3*2^(#^2/2) + 2*2^(#^2/4), 2^((#^2 + 1)/2)])/8 &, 12] (* Michael De Vlieger, Apr 12 2018 *)
  • PARI
    a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + if(n%2, 2^((n^2+1)/2), 3*2^(n^2/2) + 2*2^(n^2/4)))/8; \\ Andrew Howroyd, Nov 19 2017

Formula

From Andrew Howroyd, Nov 19 2017: (Start)
a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + 3*2^(n^2/2) + 2*2^(n^2/4)) / 8 for n even.
a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + 2^((n^2+1)/2)) / 8 for n odd. (End)

Extensions

a(5)-a(12) from Andrew Howroyd, Nov 19 2017

A367526 The number of ways of tiling the n X n grid up to diagonal and antidiagonal reflections by two tiles that are each fixed under both of these reflections.

Original entry on oeis.org

2, 9, 168, 16960, 8407040, 17180983296, 140737630961664, 4611686053860868096, 604462909825456529211392, 316912650057075646247661993984, 664613997892457973921852429862699008, 5575186299632655785536225887234636434636800, 187072209578355573530072906199130068813267662274560
Offset: 1

Views

Author

Peter Kagey, Dec 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[{2^(2 m^2 - 4 m - 1) (4^m + 4^m^2 + 8^m), 4^(m^2 - 1) (1 + 2^(1 + m) + 4^m^2)}, {m, 1, 5}] // Flatten

Formula

a(2m-1) = 2^(2m^2 - 4m - 1)(4^m + 4^m^2 + 8^m).
a(2m) = 4^(m^2 - 1)(1 + 2^(1 + m) + 4^m^2).
Previous Showing 11-20 of 37 results. Next