cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A346555 7-Sondow numbers: numbers k such that p^s divides k/p + 7 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 6, 15, 78, 294, 12642, 539026980558
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 7 (mod k).
A positive integer k is a 7-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 7 for every prime power divisor p^s of k.
2) 7/k + Sum_{prime p|k} 1/p is an integer.
3) 7 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 7 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, this sequence, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[10000000],Sondow[7][#]&]

Extensions

a(8) from Martin Ehrenstein, Feb 04 2022

A346556 8-Sondow numbers: numbers k such that p^s divides k/p + 8 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 3, 16, 48, 336, 14448, 376464, 17716019376, 419963172816
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 8 (mod k).
A positive integer k is a 8-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 8 for every prime power divisor p^s of k.
2) 8/k + Sum_{prime p|k} 1/p is an integer.
3) 8 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 8 (mod k).
Other numbers in the sequence: 17716019376, 419963172816, 67923372668477507285654170088688

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, this sequence, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[400000],Sondow[8][#]&]

Extensions

a(8)-a(9) verified by Martin Ehrenstein, Feb 04 2022

A346557 9-Sondow numbers: numbers k such that p^s divides k/p + 9 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 5, 22, 54, 378, 16254, 423522, 19930521798, 472458569418
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 9 (mod k).
A positive integer k is a 9-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 9 for every prime power divisor p^s of k.
2) 9/k + Sum_{prime p|k} 1/p is an integer.
3) 9 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 9 (mod k).
Other numbers in the sequence: 19930521798, 472458569418, 76413794252037195696360941349774

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, this sequence.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[1000000],Sondow[9][#]&]

Extensions

a(9)-a(10) verified by Martin Ehrenstein, Feb 04 2022

A349193 1-Sondow numbers: numbers j such that p divides j/p + 1 for every prime divisor p of j.

Original entry on oeis.org

1, 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

These are the weak primary pseudoperfect numbers mentioned in Grau-Oller-Sondow (2013).
Includes the primary pseudoperfect numbers (A054377). Any weak primary pseudoperfect number which is not a primary pseudoperfect number must have more than 58 distinct prime factors, and therefore must be greater than 10^110; none are known.
A positive integer j is a k-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides j/p + k for every prime power divisor p^s of j.
2) k/j + Sum_{prime p|j} 1/p is an integer.
3) k + Sum_{prime p|j} j/p == 0 (mod j).
4) Sum_{i=1..j} i^A000010(j) == k (mod j).
Numbers m such that A235137(m) == 1 (mod m).

Crossrefs

(-1) and (-2)-Sondow numbers: A326715, A330069.
2-Sondow to 9-Sondow numbers: A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]];
    Select[Range[100000],Sondow[1][#]&]

A189710 Numbers n such that n'' = n'-1 where n' and n'' are respectively the first and the second arithmetic derivative of n (A003415).

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 185, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 25 2011

Keywords

Comments

The composite numbers in the sequences are: 9, 185, 341, 377, 437, 9005, 30413, 33953, 41009, 51533, 82673, 92909,....

Examples

			9' = 6, 9''= 6'= 5, 9" = 9'- 1 -> 9 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a189710 n = a189710_list !! (n-1)
    a189710_list = elemIndices 0 $
       zipWith (-) (map a003415 a003415_list) (map pred a003415_list)
    -- Reinhard Zumkeller, May 09 2011
  • Maple
    #using Michael B. Porter's code from A003415
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2])
    for i from 1 to n do a:=der(der(i))-der(i)+1; if a=0 then j:=j+1; B[j]:=i; end if od

A190272 Numbers n such that n' = a -1, with n and a semiprimes and gcd(a,n) > 1, where n' is the arithmetic derivative of n.

Original entry on oeis.org

6, 14, 15, 22, 33, 38, 46, 51, 62, 86, 87, 91, 95, 118, 141, 142, 145, 158, 159, 166, 206, 249, 262, 267, 278, 287, 295, 321, 326, 382, 395, 398, 411, 422, 445, 446, 473, 502, 519, 537, 542, 545, 581, 591, 622, 662, 695, 699, 703, 718, 745, 758, 766, 789, 838, 886, 895, 926, 951, 958, 995, 998, 1046, 1126, 1139, 1145, 1167, 1199, 1238, 1262, 1318, 1329, 1347, 1382, 1401, 1441, 1486, 1678, 1707, 1717, 1718, 1726, 1745, 1757, 1761, 1766
Offset: 1

Views

Author

Giorgio Balzarotti, May 07 2011

Keywords

Comments

This sequence is infinite, assuming Dickson's conjecture. In fact, the conjecture implies that there are infinitely many terms of this sequence divisible by any fixed prime p. - Charles R Greathouse IV, May 08 2011
Related to the Rassias Conjecture ("for any odd prime p there are primes q < r such that p*q = q+r+1") setting n = q*r, a = q+r+1. The sequence includes the cases with p = q (or p = r). Generalization can be achieved by removing the semiprimality condition or accepting gcd(n,a)=1. The differential equation in its general form n' = a + 1 includes Primary Pseudoperfect numbers, i.e., n' = n-1 (A054377).

Examples

			For n=6, 6' = 5, a = 5-1 = 4, gcd(4,6)=2, so 6 is a term.
		

Crossrefs

Cf. A001358 (semiprimes), A003415 (arithmetic derivative), A054377 (Primary Pseudoperfect).

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    # for quick reference only
    seq(`if`(bigomega(i)=2 and bigomega(der(i)+1)=2 and gcd(i,der(i)+1)>1,i,NULL),i=1..2000);
  • PARI
    find(lim)=my(v=List());forprime(p=2,sqrtint(lim\2),forstep(q=2*p-1,lim\p,p+p,if(isprime(q\p+2)&isprime(q),listput(v,p*q))));vecsort(Vec(v)) \\ Charles R Greathouse IV, May 08 2011

Formula

Semiprimes pq with (p+q+1)/p prime. - Charles R Greathouse IV, May 08 2011

A235138 a(n) = Sum_{k=1..n} k^phi(n) (mod n) where phi(n) = A000010(n).

Original entry on oeis.org

0, 1, 2, 2, 4, 1, 6, 4, 6, 3, 10, 2, 12, 5, 7, 8, 16, 3, 18, 6, 11, 9, 22, 4, 20, 11, 18, 10, 28, 29, 30, 16, 19, 15, 23, 6, 36, 17, 23, 12, 40, 1, 42, 18, 21, 21, 46, 8, 42, 15, 31, 22, 52, 9, 39, 20, 35, 27, 58, 58, 60, 29, 33, 32, 47, 5, 66, 30, 43, 11, 70, 12, 72, 35, 35, 34, 59, 7, 78, 24, 54, 39, 82, 2, 63, 41, 55, 36, 88, 87, 71, 42, 59, 45, 71, 16, 96, 35, 57, 30
Offset: 1

Views

Author

Jonathan Sondow and Emmanuel Tsukerman, Jan 03 2014

Keywords

Comments

a(n) = n-1 if and only if n is prime or is a Giuga number A007850.
a(n) = 1 if (and probably only if) n is a primary pseudoperfect number A054377.
a(2^k*p) = 2^(k-1)*p-2^k if p is an odd prime. - Robert Israel, Apr 25 2017

Examples

			a(4) = 30 (mod 4) = 2 since 1^(phi(4)) + 2^(phi(4)) + 3^(phi(4)) + 4^(phi(4))= 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local q; q:= numtheory:-phi(n);
       add(k&^q, k=1..n) mod n
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 25 2017
  • Mathematica
    a[n_] := Mod[Sum[PowerMod[i, EulerPhi@n, n], {i, n}], n]
  • PARI
    a(n)=my(p=eulerphi(n));sum(k=1,n,k^p) \\ Charles R Greathouse IV, Jan 04 2014

Formula

a(n) = A235137(n) (mod n).
Conjecture : a(n) = Sum_{d|n} phi(n/d)*d^phi(n) (mod n). - Ridouane Oudra, Feb 17 2024

A189639 Numbers n such that n'' = n'+1 where n' and n'' are respectively the first and the second arithmetic derivative of n (A003415).

Original entry on oeis.org

161, 209, 221, 1935, 4265, 15941, 22217, 24041, 25637, 30377, 38117, 39077, 48617, 49097, 55877, 68441, 73817, 76457, 80357, 88457, 95237, 98117, 99941, 105641, 110057, 115397, 122537, 130217, 131141, 136517, 143237, 147941, 148697, 152357, 154457, 159077
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 24 2011

Keywords

Comments

The arithmetic derivative of a(n) is a Giuga's number A007850 (solution of n' = n+1).

Examples

			161' = 30, 161'' = 30' = 31 ==> 161'' = 161'+1 so 161 is a term.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a189710 n = a189710_list !! (n-1)
    a189710_list = elemIndices 0 $
       zipWith (-) (map a003415 a003415_list) (map pred a003415_list)
    -- Reinhard Zumkeller, May 09 2011
  • PARI
    /* using Michael B. Porter's code from A003415: */
    A003415(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))} /* arithmetic derivative */
    for(n=1,10^6,d1=A003415(n);d2=A003415(d1);if(d2==d1+1,print1(n,", "))); /* show terms */
    /* Joerg Arndt, Apr 25 2011 */
    

A203618 Numbers m such that (m'+1)' = m-1, where m' is the arithmetic derivative of m.

Original entry on oeis.org

1, 2, 6, 42, 104, 120, 165, 245, 272, 561, 1806, 47058, 765625, 1137501, 3874128, 9131793, 2214502422, 52495396602
Offset: 1

Views

Author

Paolo P. Lava, Jan 20 2012

Keywords

Comments

The differential equation whose solutions are the primary pseudoperfect numbers is m' = k*m-1, with k a positive integer. Let us rewrite the equation as m'+1 = k*m and then take the derivative: (m'+1)' = (k*m)' = k'*m + k*m' = k'*m + k*(k*m-1) = (k'+k^2)*m-k. Let k=1: (m'+1)' = m-1. The solutions of this equation are the primary pseudoperfect numbers plus pairs of numbers (x,y) for which x' = y-1 and y' = x-1.
A054377 is a subsequence of this sequence.
a(17) > 10^9. - Michel Marcus, Nov 05 2014
a(19) > 10^11. - Giovanni Resta, Jun 04 2016

Examples

			765625' = 1137500; (1137500 + 1)' = 1137501' = 765624 = 765625 - 1, so 765625 is a term.
1137501' = 765624; (765624 + 1)' = 765625' = 1137500 = 1137501 - 1, so 1137501 is a term.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local a,n,p,pfs;
    for n from 1 to i do
      pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs);
      pfs:=ifactors(a+1)[2]; a:=(a+1)*add(op(2,p)/op(1,p),p=pfs);
      if a=n-1 then print(n); fi;
    od;
    end:
    P(10000000);
  • Mathematica
    A003415[n_]:=If[Abs[n]<2,0,n*Total[#2/#1&@@@FactorInteger[Abs[n]]]];
    Select[Range[1,100000],A003415[A003415[#]+1]==#-1&] (* Julien Kluge, Jul 08 2016 *)
  • PARI
    ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);
    isok(n) = ad(ad(n)+1) == n-1; \\ Michel Marcus, Nov 05 2014

Extensions

a(17)-a(18) from Giovanni Resta, Jun 04 2016

A369469 a(n) = number of integer solutions to 1 <= x1 < x2 < ... < xn to 1/x1 + ... + 1/xn = (1 - 1/x1) * ... * (1 - 1/xn).

Original entry on oeis.org

1, 1, 1, 24, 293, 9219, 787444
Offset: 1

Views

Author

Max Alekseyev, Jan 23 2024

Keywords

Comments

For any n, A369470(n) >= a(n) >= 1 (see A369607).

Crossrefs

Previous Showing 21-30 of 38 results. Next