A098070
Consider a single king on an infinite chessboard. This sequence gives number of n-move paths when king starting at origin reaches the origin again for the first time at step n.
Original entry on oeis.org
1, 0, 8, 24, 152, 816, 5320, 33840, 229144, 1560864, 10906576, 76962912, 550406472, 3969725856, 28875757200, 211436151456, 1557623566104, 11533972310976, 85802992349344, 640901090847360, 4804716170926672, 36138383022850368, 272621594933332000
Offset: 0
From _Jesiah Darnell_, Sep 22 2023: (Start)
A094061(4) - (a(1)a(3)*2 + a(2)*a(2)*1) = 216 - (0 + 64) = 152, so a(4) = 152.
A094061(7) - (a(1)a(6)*2 + a(2)*a(2)*a(3)*3 + a(2)*a(5)*2 + a(4)*a(3)*2) = 58800 - (0 + 4608 + 13056 + 7296) = 33840, so a(7) = 33840. (End)
-
G:=t->2-Pi*(1+4*t)/2/EllipticK(4*sqrt(t*(1+t))/(1+4*t)); Gf:=convert(series(G(t),t,30),polynom): seq(print(i,coeff(Gf,t,i)),i=0..degree(Gf));
-
CoefficientList[Series[2-Pi/2*(1+4*x)/EllipticK[16*x*(1+x)/(1+4*x)^2],{x,0,22}],x] (* Vaclav Kotesovec, Mar 10 2014 *)
A328127
G.f.: E(4*sqrt(x)) / K(4*sqrt(x)), where E(), K() are complete elliptic integrals.
Original entry on oeis.org
1, -8, -16, -128, -1312, -15104, -186112, -2398208, -31898176, -434421248, -6025687552, -84808699904, -1207939190272, -17375932633088, -252046328713216, -3682284573851648, -54130292542567552, -800036763837307904, -11880834659028677632, -177181827571092267008
Offset: 0
-
seq(coeff(series(EllipticE(4*sqrt(x))/EllipticK(4*sqrt(x)), x, 21), x, n), n = 0..20);
-
CoefficientList[Series[EllipticE[16*x]/EllipticK[16*x], {x, 0, 20}], x]
A361364
Number of 5-dimensional cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages.
Original entry on oeis.org
1, 10, 170, 6500, 332050, 19784060, 1296395700, 90616189800, 6637652225250, 503852804991500, 39337349077483420, 3142010167321271000, 255747325678297576100, 21150729618673827139000, 1773152567858996728205000, 150409554094012703302602000, 12890454660664800562838261250
Offset: 0
Cf.
A287317,
A039699 (number of walks that return to the origin in 2n steps).
-
walk5d[n_] :=
Sum[(2 n)!/(i! j! k! l! (n - i - j - k - l)!)^2, {i, 0, n}, {j, 0,
n - i}, {k, 0, n - i - j}, {l, 0, n - i - j - k}]; invertSeq[seq_] :=
CoefficientList[1 - 1/SeriesData[x, 0, seq, 0, Length[seq], 1], x]; invertSeq[Table[walk5d[n], {n, 0, 15}]]
A227997
Triangular array read by rows. T(n,k) is the number of square lattice walks that start and end at the origin after 2n steps having k primitive loops; n>=1, 1<=k<=n.
Original entry on oeis.org
4, 20, 16, 176, 160, 64, 1876, 1808, 960, 256, 22064, 22048, 13248, 5120, 1024, 275568, 282528, 182528, 83456, 25600, 4096, 3584064, 3747456, 2542464, 1284096, 481280, 122880, 16384, 47995476, 50981136, 35851968, 19365120, 8186880, 2617344, 573440, 65536, 657037232, 707110432, 511288256, 290053120, 133084160, 48799744, 13647872, 2621440, 262144, 9150655216, 9958458656, 7363711104, 4338317824, 2113592320, 851398656, 276856832, 68943872, 11796480, 1048576
Offset: 1
4,
20, 16,
176, 160, 64,
1876, 1808, 960, 256,
22064, 22048, 13248, 5120, 1024,
275568, 282528, 182528, 83456, 25600, 4096
-
nn=6;a=Sum[Binomial[2n,n]^2x^n,{n,0,nn}];Map[Select[#,#>0&]&,Drop[CoefficientList[Series[1/(1-y(1-1/a)),{x,0,nn}],{x,y}],1]]//Grid
A378026
Number of simple lattice paths, steps (-1,0,0),(0,-1,0),(0,0,-1), of length 3n from (n,n,n) to the origin, never returning to the diagonal x = y = z before the origin.
Original entry on oeis.org
1, 6, 54, 816, 14814, 295812, 6262488, 137929392, 3125822238, 72383434332, 1704669773652, 40693683620448, 982302086191752, 23933136140685648, 587728374471479952, 14530886841268923264, 361374588105759096606, 9033515437023805672044, 226844689948433272890396, 5719461854507320708714464
Offset: 0
-
b:= proc(n) option remember; (3*n)!/(n!)^3 end:
a:= proc(n) option remember;
b(n)-add(a(n-i)*b(i), i=1..n-1)
end:
seq(a(n), n=0..22); # Alois P. Heinz, Nov 15 2024
-
nmax = 20; CoefficientList[Series[2 - 1/Hypergeometric2F1[1/3, 2/3, 1, 27*x], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 15 2024 *)
A068218
Triangle of numbers of square lattice walks that start and end at origin after 2k steps and contain exactly r steps to the east, not touching origin at intermediate stages.
Original entry on oeis.org
1, 2, 2, 2, 16, 2, 4, 84, 84, 4, 10, 400, 1056, 400, 10, 28, 1820, 9184, 9184, 1820, 28, 84, 8064, 66276, 126720, 66276, 8064, 84, 264, 35112, 426888, 1329768, 1329768, 426888, 35112, 264, 858, 151008, 2546544, 11737440, 19123776, 11737440
Offset: 0
T(3,1)=84 because there are 84 distinct lattice walks of length 2*3=6 starting and ending at the origin and containing exactly 1 step to the east and not touching origin at intermediate steps. Let E, W, S, N denote the 4 possible directions, then NNEWSS and NWSSNE are examples of such walks.
-
A069466[k_, r_] := Binomial[2 k, k]*Binomial[k, r]^2; t[k_, r_] := t[k, r] = A069466[k, r] - Sum[Sum[t[i, j]*A069466[k - i, r - j], {j, 0, r}], {i, 1, k - 1}]; Table[t[k, r], {k, 0, 8}, {r, 0, k}] // Flatten (* Jean-François Alcover, Nov 21 2012, from formula *)
A366924
Number of 2n-step walks on square lattice starting and ending at the origin with first step north and avoiding early returns.
Original entry on oeis.org
1, 5, 44, 469, 5516, 68892, 896016, 11998869, 164259308, 2287663804, 32303714576, 461352451292, 6651528522256, 96669999247184, 1414652852290752, 20825721430968213, 308191001159544876, 4581880220433822108, 68398967956430765712, 1024826569020715088508, 15405900278361291658896
Offset: 1
-
b:= proc(n) b(n):= binomial(2*n, n)^2 end:
a:= proc(n) option remember;
b(n)/4-add(a(n-i)*b(i), i=1..n-1)
end:
seq(a(n), n=1..21); # Alois P. Heinz, Dec 05 2023
-
b[n_] := b[n] = Binomial[2*n, n]^2;
a[n_] := a[n] = b[n]/4 - Sum[a[n-i]*b[i], {i, 1, n-1}];
Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Jan 28 2025, after Alois P. Heinz *)
Comments