cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A154348 a(n) = 16*a(n-1) - 56*a(n-2) for n>1, with a(0)=1, a(1)=16.

Original entry on oeis.org

1, 16, 200, 2304, 25664, 281600, 3068416, 33325056, 361369600, 3915710464, 42414669824, 459354931200, 4974457389056, 53867442077696, 583309459456000, 6316374594945024, 68396663789584384, 740629643316428800
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009

Keywords

Comments

Third binomial transform of A164609, fourth binomial transform of A164608, fifth binomial transform of A054490, sixth binomial transform of A164607, seventh binomial transform of A083100, eighth binomial transform of A164683.
lim_{n -> infinity} a(n)/a(n-1) = 8 + 2*sqrt(2) = 10.8284271247....

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A164609, A164608, A054490, A164607, A083100, A164683.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((8+2*r)^n-(8-2*r)^n)/(4*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
  • Mathematica
    Join[{a=1,b=16},Table[c=16*b-56*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*)
    LinearRecurrence[{16,-56},{1,16},30] (* Harvey P. Dale, Aug 31 2016 *)

Formula

a(n) = 16*a(n-1) - 56*a(n-2) for n>1. - Philippe Deléham, Jan 12 2009
a(n) = ( (8 + 2*sqrt(2))^n - (8 - 2*sqrt(2))^n )/(4*sqrt(2)).
G.f.: 1/(1 - 16*x + 56*x^2). - Klaus Brockhaus, Jan 12 2009; corrected Oct 08 2009
E.g.f.: (1/(2*sqrt(2)))*exp(8*x)*sinh(2*sqrt(2)*x). - G. C. Greubel, Sep 13 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 12 2009
Edited by Klaus Brockhaus, Oct 08 2009
Offset corrected. - R. J. Mathar, Jun 19 2021

A210695 a(n) = 6*a(n-1) - a(n-2) + 6 with n>1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 12, 77, 456, 2665, 15540, 90581, 527952, 3077137, 17934876, 104532125, 609257880, 3551015161, 20696833092, 120629983397, 703083067296, 4097868420385, 23884127455020, 139206896309741, 811357250403432, 4728936606110857, 27562262386261716
Offset: 0

Views

Author

Kenneth J Ramsey, May 09 2012

Keywords

Comments

It appears that if p is a prime of the form 8*r +/- 1, a(p-1) == 0 (mod p); and that if p is a prime of the form 8*r +/- 3, a(p+1) == 0 (mod p).

Crossrefs

Cf. A054490 (first differences).

Programs

  • Magma
    [n le 2 select n-1 else 6*Self(n-1)-Self(n-2)+6: n in [1..23]]; // Bruno Berselli, Jun 26 2012
  • Mathematica
    m = 36;n = 5; c = 0;
    list3 = Reap[While[c < 22, t = 6 n - m + 6; Sow[t];m = n; n = t;c++]][[2,1]]

Formula

G.f.: x*(1+5*x)/((1-x)*(1-6*x+x^2)). [Bruno Berselli, Jun 26 2012]
a(n) = ((1-2*sqrt(2))*(1-sqrt(2))^(2n-1)+(1+2*sqrt(2))*(1+sqrt(2))^(2n-1)-6)/4. [Bruno Berselli, Jun 26 2012]
2*a(n) = 3*A001109(n+1)-13*A001109(n)-3. - R. J. Mathar, Jul 18 2012

Extensions

Definition rewritten from Bruno Berselli, Jun 26 2012

A331211 Number of green nodes in n-th power graph W exponentiation of a cycle graph with 7 blue nodes and one green node.

Original entry on oeis.org

1, 15, 117, 891, 6777, 51543, 392013, 2981475, 22675761, 172461663, 1311666021, 9975943179, 75872547369, 577052549415, 4388802753213, 33379264377459, 253867706760033, 1930803860947887, 14684827767302997, 111686210555580315, 849435201142733529, 6460422977475127287
Offset: 0

Views

Author

George Strand Vajagich, Mar 01 2020

Keywords

Examples

			For n = 2 take g(1)=15 and b(1)=51. Multiply b(1) by 2 to get 102 add 15 to get 117.
For n = 3 take g(2)=117 and b(2)=387. Multiply b(2) by 2 to get 774 add 177 to get 891.
		

Crossrefs

Cf. A332936 (number of blue nodes).
Similar sequences with a cycle size 3..6 are: A007483, A048876, A189274(n+1), A054490.

Programs

  • PARI
    Vec((1 + 7*x) / (1 - 8*x + 3*x^2) + O(x^20)) \\ Colin Barker, Mar 03 2020
  • Python
    g=1
    b=7
    sg=0
    sb=0
    bl=[]
    gl=[]
    for int in range(1,20):
      sg=g*1+b*2
      sb=b*7+g*2
      g=sg
      b=sb
      gl.append(g)
      bl.append(b)
    print(gl)
    

Formula

a(n) = a(n-1) + 2*b(n-1), b(n) = 2*a(n-1) + 7*b(n-1) with a(0) = 1 and b(0) = 7 where b(n) = A332936(n).
From Colin Barker, Mar 03 2020: (Start)
G.f.: (1 + 7*x) / (1 - 8*x + 3*x^2).
a(n) = 8*a(n-1) - 3*a(n-2) for n>1.
(End)
From Stefano Spezia, Mar 03 2020: (Start)
a(n) = ((4 - sqrt(13))^n*(-11 + sqrt(13)) + (4 + sqrt(13))^n*(11 + sqrt(13)))/(2*sqrt(13)).
E.g.f.: exp(4*x)*cosh(sqrt(13)*x) + (11*exp(4*x)*sinh(sqrt(13)*x))/sqrt(13).
(End)

Extensions

a(14)-a(21) from Stefano Spezia, Mar 03 2020
Typo in a(14) fixed by Colin Barker, Apr 26 2020

A334456 Number h of points and of blocks of nontrivial biplanes.

Original entry on oeis.org

7, 11, 16, 37, 56, 79, 121
Offset: 1

Views

Author

Stefano Spezia, Apr 30 2020

Keywords

Comments

A biplane is an incidence structure consisting of a set P of h points and a set of h blocks, each of which is a k-subset of P (block size k), such that every pair of points lies in exactly 2 blocks (see Alavi et al.).

Crossrefs

A334457 Block sizes k of nontrivial biplanes.

Original entry on oeis.org

4, 5, 6, 9, 11, 13, 16
Offset: 1

Views

Author

Stefano Spezia, Apr 30 2020

Keywords

Comments

A biplane is an incidence structure consisting of a set P of h points and a set of h blocks, each of which is an k-subset of P (block size k), such that every pair of points lies in exactly 2 blocks (see Alavi et al.).

Crossrefs

Previous Showing 11-15 of 15 results.