A257171 Sum of numbers on n-th segment of Ulam's spiral.
1, 5, 9, 13, 27, 36, 62, 78, 120, 145, 207, 243, 329, 378, 492, 556, 702, 783, 965, 1065, 1287, 1408, 1674, 1818, 2132, 2301, 2667, 2863, 3285, 3510, 3992, 4248, 4794, 5083, 5697, 6021, 6707, 7068, 7830, 8230, 9072, 9513, 10439, 10923, 11937, 12466, 13572, 14148, 15350
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
Programs
-
Mathematica
f[n_] := Block[{t = {5, 9}}, For[i = 3, i <= n, i++, If[OddQ@ i, AppendTo[t, t[[i - 1]] + ((i - 1)/2 + 1)^2], AppendTo[t, t[[i - 1]] + 2 ((i - 1)^2/4 + (i - 1) + 7/4)]]]; {1}~Join~t]; f@ 48(* Michael De Vlieger, Apr 17 2015 *)
-
PARI
a(n) = if(n<=0, 1, if(n<=1, 5, if(n<=2, 9, if(Mod(n,2)==0, a(n-1)+2*((n-1)^2/4+(n-1)+7/4), a(n-1)+((n-1)/2+1)^2)))) for (n=0, 100, print1(a(n),", "))
-
PARI
Vec((2*x^8-3*x^7-5*x^6+9*x^5+5*x^4-8*x^3+x^2+4*x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Apr 18 2015
Formula
a(0) = 1; a(1) = 5; a(2) = 9; for n >= 3, a(n) = a(n-1)+((n-1)/2+1)^2, if n = even; otherwise a(n) = a(n-1)+2*((n-1)^2/4+(n-1)+7/4).
From Colin Barker, Apr 17 2015: (Start)
a(n) = (n^3+5*n^2+14*n+16)/8 for n even and n>1.
a(n) = (n^3+4*n^2+11*n+8)/8 for n odd and n>1.
G.f.: (2*x^8-3*x^7-5*x^6+9*x^5+5*x^4-8*x^3+x^2+4*x+1) / ((x-1)^4*(x+1)^3).
(End)
Comments