cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A322396 Number of unlabeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.

Original entry on oeis.org

1, 1, 1, 2, 5, 18, 98, 779, 10589, 255790, 11633297, 1004417286, 163944008107, 50324877640599, 29001521193534445, 31396727025729968365, 63969154112074956299242, 245871360738448777028919520, 1787330701747389106609369225312, 24636017249593067184544456944967278
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    bridgelessGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    cycleIndexSeries(n)={1+sSubstOp(bridgelessGraphs(n), symGroupSeries(n))}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Extensions

a(6)-a(10) from Andrew Howroyd, Dec 08 2018
Terms a(11) and beyond from Andrew Howroyd, Dec 31 2020

A283755 Irregular triangular array read by rows: T(n,k) = number of non-isomorphic unlabeled connected graphs with loops on n nodes and with k edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 2, 6, 11, 13, 10, 5, 2, 1, 3, 14, 35, 61, 75, 68, 49, 28, 13, 5, 2, 1, 6, 33, 112, 262, 463, 625, 684, 620, 468, 301, 170, 82, 35, 14, 5, 2, 1, 11, 81, 347, 1059, 2458, 4565, 7018, 9122, 10186, 9878, 8366, 6219, 4085, 2377, 1232, 582, 251, 98, 37, 14, 5, 2, 1, 23, 204, 1085, 4091, 12014, 28779, 58162, 101315, 154484, 208321, 250120, 268649, 258994
Offset: 1

Views

Author

Marko Riedel, Mar 15 2017

Keywords

Comments

The range for the subindex k is from n-1 to n(n+1)/2.

Examples

			First rows are:
1,  1;
1,  1,  1;
1,  3,  3,  2,  1;
2,  6, 11, 13, 10,  5,  2,  1;
3, 14, 35, 61, 75, 68, 49, 28, 13, 5, 2, 1;
		

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Row sums are A054921.

Formula

T(n,k) = A322114(k,n). - Andrew Howroyd, Oct 23 2019

A305028 Number of unlabeled blobs spanning n vertices without singleton edges.

Original entry on oeis.org

1, 0, 1, 2, 10, 128
Offset: 0

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

A blob is a connected antichain of finite sets that cannot be capped by a hypertree with more than one branch.

Examples

			Non-isomorphic representatives of the a(4) = 10 blobs:
  {{1,2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

A322659 Number of connected regular simple graphs on n labeled vertices.

Original entry on oeis.org

1, 1, 1, 4, 13, 146, 826, 44808, 1074557, 155741296, 10381741786, 6939251270348, 2203360264480750, 4186526735251514044, 3747344007864300197810, 35041787059621536192399824, 156277111373298355107598128061, 4142122641757597729416733678931968
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2018

Keywords

Comments

A graph is regular if all vertices have the same degree.

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n==1,1,Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],SameQ@@Length/@Split[Sort[Join@@#]],Length[csm[#]]==1]&]]],{n,6}]

Extensions

a(8)-a(15) from Andrew Howroyd, Dec 23 2018
a(16)-a(18) from Andrew Howroyd, Sep 02 2019

A318590 Number of connected balanced simple signed graphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 5, 28, 177, 1982, 33997, 1020516, 54570672, 5347070228, 967135763525, 324200029119318, 202046821340636691, 234878262433630160622, 511060736355598412146405, 2088401066728281847415734793, 16079824271822965645002329491423, 233994776259866281916838227225733732
Offset: 0

Views

Author

Andrew Howroyd, Sep 25 2018

Keywords

Crossrefs

Formula

a(2*n+1) = A054921(2*n+1)/2, a(2*n) = (a(n) + A054919(n) + A054921(2*n) - A054921(n))/2.
Inverse Euler transform of A034892.

A322367 Number of disconnected or empty integer partitions of n.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 7, 14, 17, 27, 34, 54, 63, 98, 118, 165, 207, 287, 345, 474, 574, 757, 931, 1212, 1463, 1890, 2292, 2898, 3515, 4413, 5303
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The a(3) = 2 through a(9) = 27 disconnected integer partitions:
  (21)   (31)    (32)     (51)      (43)       (53)        (54)
  (111)  (211)   (41)     (321)     (52)       (71)        (72)
         (1111)  (221)    (411)     (61)       (332)       (81)
                 (311)    (2211)    (322)      (431)       (432)
                 (2111)   (3111)    (331)      (521)       (441)
                 (11111)  (21111)   (421)      (611)       (522)
                          (111111)  (511)      (3221)      (531)
                                    (2221)     (3311)      (621)
                                    (3211)     (4211)      (711)
                                    (4111)     (5111)      (3222)
                                    (22111)    (22211)     (3321)
                                    (31111)    (32111)     (4221)
                                    (211111)   (41111)     (4311)
                                    (1111111)  (221111)    (5211)
                                               (311111)    (6111)
                                               (2111111)   (22221)
                                               (11111111)  (32211)
                                                           (33111)
                                                           (42111)
                                                           (51111)
                                                           (222111)
                                                           (321111)
                                                           (411111)
                                                           (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]!=1&]],{n,20}]

A322393 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with edge-connectivity k, for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 6, 1, 0, 0, 0, 0, 7, 1, 2, 1, 0, 0, 0, 14, 1, 0, 0, 0, 0, 0, 0, 17, 1, 2, 1, 1, 0, 0, 0, 0, 27, 1, 1, 1, 0, 0, 0, 0, 0, 0, 34, 1, 3, 2, 1, 1, 0, 0, 0, 0, 0, 54, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 1, 4, 4, 3, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

The edge connectivity of an integer partition is the minimum number of parts that must be removed so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			Triangle begins:
   1
   0  1
   1  1  0
   2  1  0  0
   3  1  1  0  0
   6  1  0  0  0  0
   7  1  2  1  0  0  0
  14  1  0  0  0  0  0  0
  17  1  2  1  1  0  0  0  0
  27  1  1  1  0  0  0  0  0  0
  34  1  3  2  1  1  0  0  0  0  0
  54  2  0  0  0  0  0  0  0  0  0  0
  63  1  4  4  3  1  1  0  0  0  0  0  0
Row 6 {7, 1, 2, 1} counts the following integer partitions:
  (51)      (6)  (33)  (222)
  (321)          (42)
  (411)
  (2211)
  (3111)
  (21111)
  (111111)
		

Crossrefs

Row sums are A000041. First column is A322367. Second column is A322391.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&]
    Table[Length[Select[IntegerPartitions[n],edgeConn[#]==k&]],{n,10},{k,0,n}]

A322368 Heinz numbers of disconnected integer partitions.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

Differs from A289509 in having 1 and lacking 2, 195, 455, 555, 585...
Also positions of entries > 1 in A305079.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The sequence of all disconnected integer partitions begins: (11), (21), (111), (31), (211), (41), (32), (1111), (221), (311), (51), (2111), (61), (411), (321), (11111), (52), (71), (43), (2211), (81), (3111), (421), (511), (322), (91), (21111), (331), (72), (611), (2221), (53), (4111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[200],Length[csm[primeMS/@primeMS[#]]]>1&]

A322369 Number of strict disconnected or empty integer partitions of n.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 10, 16, 17, 22, 26, 33, 36, 48, 52, 64, 76, 90, 101, 125, 142, 166, 192, 225, 250, 302, 339, 393, 451, 515, 581, 675, 762, 866, 985, 1122, 1255, 1441, 1612, 1823, 2059, 2318, 2591, 2930, 3275, 3668, 4118, 4605, 5125, 5749
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The a(3) = 1 through a(11) = 10 strict disconnected integer partitions:
  (2,1)  (3,1)  (3,2)  (5,1)    (4,3)    (5,3)    (5,4)    (7,3)      (6,5)
                (4,1)  (3,2,1)  (5,2)    (7,1)    (7,2)    (9,1)      (7,4)
                                (6,1)    (4,3,1)  (8,1)    (5,3,2)    (8,3)
                                (4,2,1)  (5,2,1)  (4,3,2)  (5,4,1)    (9,2)
                                                  (5,3,1)  (6,3,1)    (10,1)
                                                  (6,2,1)  (7,2,1)    (5,4,2)
                                                           (4,3,2,1)  (6,4,1)
                                                                      (7,3,1)
                                                                      (8,2,1)
                                                                      (5,3,2,1)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,Length[zsm[#]]!=1]&]],{n,30}]

A368726 Number of non-isomorphic connected multiset partitions of weight n into singletons or pairs.

Original entry on oeis.org

1, 1, 3, 3, 8, 10, 26, 38, 93, 161, 381, 732, 1721, 3566, 8369, 18316, 43280, 98401, 234959, 549628, 1327726, 3175670, 7763500, 18905703, 46762513, 115613599, 289185492, 724438500, 1831398264, 4641907993, 11853385002, 30365353560
Offset: 0

Views

Author

Gus Wiseman, Jan 06 2024

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 10 multiset partitions:
  {{1}}  {{1,1}}    {{1},{1,1}}    {{1,1},{1,1}}      {{1},{1,1},{1,1}}
         {{1,2}}    {{2},{1,2}}    {{1,2},{1,2}}      {{1},{1,2},{2,2}}
         {{1},{1}}  {{1},{1},{1}}  {{1,2},{2,2}}      {{2},{1,2},{1,2}}
                                   {{1,3},{2,3}}      {{2},{1,2},{2,2}}
                                   {{1},{1},{1,1}}    {{2},{1,3},{2,3}}
                                   {{1},{2},{1,2}}    {{3},{1,3},{2,3}}
                                   {{2},{2},{1,2}}    {{1},{1},{1},{1,1}}
                                   {{1},{1},{1},{1}}  {{1},{2},{2},{1,2}}
                                                      {{2},{2},{2},{1,2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

For edges of any size we have A007718.
This is the connected case of A320663.
The case of singletons and strict pairs is A368727, Euler transform A339888.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A007716 counts non-isomorphic multiset partitions, into pairs A007717.
A062740 counts connected loop-graphs, unlabeled A054921.
A320732 counts factorizations into primes or semiprimes, strict A339839.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n], Max@@Length/@#<=2&&Length[csm[#]]<=1&]]],{n,0,8}]

Formula

Inverse Euler transform of A320663.
Previous Showing 41-50 of 53 results. Next