cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A175627 a(1) = 1; a(n) is the smallest square > 2*a(n-1).

Original entry on oeis.org

1, 4, 9, 25, 64, 144, 289, 625, 1296, 2601, 5329, 10816, 21904, 44100, 88209, 177241, 355216, 710649, 1423249, 2849344, 5702544, 11410884, 22829284, 45670564, 91355364, 182736324, 365497924, 730999369, 1462068169, 2924213776, 5848578576, 11697287716, 23394620209, 46789583481
Offset: 1

Views

Author

Ctibor O. Zizka, Dec 04 2010

Keywords

Crossrefs

Cf. A055496.

Programs

  • Mathematica
    NestList[(Floor[Sqrt[2#]]+1)^2&,1,40] (* Harvey P. Dale, Jul 26 2017 *)
  • PARI
    {a=1; print1(a, ", "); for(i=1, 40, a=(ceil(sqrt(2*a)))^2; print1(a, ", "))} /* Zak Seidov, Dec 04 2010 */

Formula

a(n) = (ceiling(sqrt(2*a(n-1))))^2.
lim_{n->oo} (a(n+1)/a(n)) = 2.

A207890 a(0)=1; for n>=1,- the minimal increasing sequence, such that, for n>=1, the row sums of Pascal-like triangle with left side {1,1,1,...} and right side {a(0), a(1), a(2),...} form an increasing sequence of primes.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 29, 44, 55, 66, 69, 72, 77, 86, 149, 152, 167, 172, 183, 198, 229, 230, 233, 254, 267, 276, 285, 316, 355, 370, 377, 402, 423, 458, 469, 478, 517, 570, 623, 704, 725, 730, 753, 762, 801, 818, 839, 858, 861, 938, 943, 982
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1.....2.....2
.3..|..1.....3.....4.....3
.4..|..1.....4.....7.....7.....4
.5..|..1.....5....11....14....11.....5
.6..|..1.....6....16....25....25....16.....8
.7..|..1.....7....22....41....50....41....24.....11
.8..|
The row sums for n >= 1 form sequence A055496.
		

Crossrefs

Cf. A055496.

Programs

  • Mathematica
    rows={{1},{1,1}}; Table[(x=Flatten[{1,2 MovingAverage[rows[[n]],2]}]; sx=Apply[Plus,x]; z=NextPrime[sx,NestWhile[#+1&,1,NextPrime[sx,#]-sxA207890=Map[Last[#]&,rows]

A083005 a(1)=1, a(n)=2a(n-1)+1 if a(n-1) is prime, a(n)=a(n-1)+1 otherwise.

Original entry on oeis.org

1, 2, 5, 11, 23, 47, 95, 96, 97, 195, 196, 197, 395, 396, 397, 795, 796, 797, 1595, 1596, 1597, 3195, 3196, 3197, 3198, 3199, 3200, 3201, 3202, 3203, 6407, 6408, 6409, 6410, 6411, 6412, 6413, 6414, 6415, 6416, 6417, 6418, 6419, 6420, 6421, 12843, 12844
Offset: 1

Views

Author

Benoit Cloitre, May 31 2003

Keywords

Comments

Primes in this sequence are A055496.- Robert Israel, May 23 2017

Crossrefs

Cf. A055496.

Programs

  • Maple
    P[0]:= 0:
    for n from 2 to 20 do P[n]:= nextprime(2*P[n-1]) od:
    seq($2*P[i]+1..P[i+1],i=0..19); # Robert Israel, May 23 2017
  • Mathematica
    NestList[If[PrimeQ[#],2#+1,#+1]&,1,50] (* Harvey P. Dale, Jul 02 2021 *)

Formula

Conjecture : limit n ->oo log(a(n))/sqrt(n)=c= 1.3....

Extensions

Offset corrected by Robert Israel, May 23 2017

A118476 a(0) = 1; a(n) is least k with n prime factors and k > n*a(n-1).

Original entry on oeis.org

1, 2, 6, 20, 81, 408, 2480, 17376, 139040, 1251450, 12514816, 137663064, 1651956992, 21475443200, 300656206080, 4509843098112, 72157489576704, 1226677322842112, 22080191811166208, 419523644412176256, 8390472888243683328, 176199930653117513728
Offset: 0

Views

Author

Jonathan Vos Post, May 04 2006

Keywords

Comments

This is a super-polynomial function, as for positive n, a(n) > n!.
Prime factors counted with multiplicity. - Harvey P. Dale, Aug 25 2019

Examples

			a(1) = 2 because 2 is the smallest prime (integer with 1 prime factor) greater than 1 * 1 = 1.
a(2) = 6 because 6 = 2 * 3 is the smallest semiprime (integer with 2 prime factors) greater than 2 * 2 = 4.
a(3) = 20 because 20 = 2^2*5 is the smallest 3-almost prime (integer with 3 prime factors) greater than 3 * 6 = 18.
		

Crossrefs

Programs

  • Maple
    A118476 := proc(n) option remember; local k; if n = 0 then 1; else for k from n*procname(n-1)+1 do if numtheory[bigomega](k) = n then return k; end if; end do: end if; end proc:
    seq(A118476(n),n=0..14) ; # R. J. Mathar, Dec 22 2010
  • Mathematica
    lkpf[{n_,a_}]:=Module[{k=a(n+1)+1},While[PrimeOmega[k]!=n+1,k++];{n+1,k}]; NestList[lkpf,{0,1},21][[All,2]] (* Harvey P. Dale, Aug 25 2019 *)

Formula

a(0) = 1; a(n) least n-almost prime > n*a(n-1).

Extensions

Terms corrected from a(4) on by R. J. Mathar, Dec 22 2010
a(15)-a(21) from Donovan Johnson, Jan 06 2011

A118912 a(1) = 2; a(n) is greatest prime < a(n-1)^4.

Original entry on oeis.org

2, 13, 28559, 665230244078823349, 195833931687186822327230545227550596864953022841534058316595001440791433
Offset: 1

Views

Author

Jonathan Vos Post, May 05 2006

Keywords

Comments

Exponent-4 analog of A059785 a(n+1)=prevprime(a(n)^2), with exponent 3 being A118910 a(1) = 2; a(n) is greatest prime < a(n-1)^3.

Examples

			a(1) = 2, by definition.
a(2) = 13 = 2^4 - 3.
a(3) = 28559 = 13^4 - 2.
a(4) = 665230244078823349 = 28559^4 - 12.
a(5) = 195833931687186822327230545227550596864953022841534058316595001440791433 = 665230244078823349^4 - 168.
a(6) is too large to include.
		

Crossrefs

Programs

  • Mathematica
    NestList[NextPrime[#^4,-1]&,2,5] (* Harvey P. Dale, Feb 18 2025 *)

Formula

a(1) = 2; a(n) is greatest prime < a(n-1)^4.

A156321 a(1)=0, a(n+1) is smallest nonprime > 2*a(n).

Original entry on oeis.org

0, 1, 4, 9, 20, 42, 85, 171, 343, 687, 1375, 2751, 5504, 11009, 22019, 44039, 88080, 176162, 352325, 704651, 1409303, 2818607, 5637215, 11274431, 22548863, 45097727, 90195455, 180390911, 360781823, 721563647, 1443127295, 2886254591
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 08 2009

Keywords

Examples

			a(5) is the smallest nonprime > 2*a(4)=2*9=18, hence a(5)=20.
		

Crossrefs

Programs

  • Mathematica
    np[n_]:=Module[{k=2n+1},If[PrimeQ[k],k+1,k]]; NestList[np,0,40] (* Harvey P. Dale, May 23 2012 *)

Extensions

More terms from R. J. Mathar, Feb 10 2009

A156324 a(1)=0, a(n+1) is smallest nonprime >= a(n)+n.

Original entry on oeis.org

0, 1, 4, 8, 12, 18, 24, 32, 40, 49, 60, 72, 84, 98, 112, 128, 144, 161, 180, 200, 220, 242, 264, 287, 312, 338, 364, 391, 420, 450, 480, 511, 543, 576, 610, 645, 681, 718, 756, 795, 835, 876, 918, 961, 1005, 1050, 1096, 1143, 1191, 1240, 1290, 1341, 1393, 1446
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 08 2009

Keywords

Examples

			a(4) is the smallest nonprime >= a(3) + 3 = 4 + 3 = 7, hence a(4)=8.
		

Crossrefs

Programs

  • Maple
    A141468 := proc(n) option remember ; local a ; if n = 1 then 0 ; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; fi; od: fi; end: A156324 := proc(n) option remember ; local a; if n = 1 then 0; else for a from procname(n-1)+n-1 do if not isprime(a) then RETURN(a) ; fi; od: fi; end: seq(A156324(n),n=1..80) ; # R. J. Mathar, Feb 10 2009
  • Mathematica
    nxt[{n_,a_}]:=Module[{k=0,c=a+n+1},While[PrimeQ[c+k],k++];{n+1,c+k}]; Transpose[NestList[nxt,{0,0},60]][[2]] (* Harvey P. Dale, Dec 29 2015 *)

Extensions

Terms beginning at a(31) corrected by R. J. Mathar, Feb 10 2009

A164962 a(n) is the least prime from the union {2,3} and A164333, beginning with which the n-th prime p_n is obtained by some number of iterations of the S operator g(see A164960).

Original entry on oeis.org

2, 3, 2, 3, 2, 13, 3, 19, 2, 13, 31, 3, 19, 43, 2, 53, 13, 61, 31, 71, 73, 3, 19, 43, 2, 101, 103, 53, 109, 113, 13, 131, 31
Offset: 1

Views

Author

Vladimir Shevelev, Sep 02 2009

Keywords

Comments

The sequence is connected with our sieve selecting the primes of the union {2,3} and A164333 from all primes. Note that a(n)=n iff p_n is in the considered union, which corresponds to 0's iterations of g.

Crossrefs

A175953 Let a(1)=1; for n>1 a(n)=nextprime(a(n-1)+(a(n-1)+1)/4).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 17, 23, 29, 37, 47, 59, 79, 101, 127, 163, 211, 269, 337, 431, 541, 677, 853, 1069, 1361, 1709, 2137, 2677, 3347, 4201, 5261, 6577, 8231, 10289, 12889, 16127, 20161, 25219, 31531, 39419, 49277, 61603, 77017, 96281, 120371, 150473
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 29 2010

Keywords

Comments

The following definition of nextprime(q) is used: if q is an integer and prime, nextprime(q)=q. If q is an integer and composite or rational, nextprime(q) is the smallest prime >q. [R. J. Mathar, Oct 30 2010]

Crossrefs

Programs

  • Maple
    nprime := proc(n) if type(n,'integer') then if isprime(n) then return n; else return nextprime(n) ; end if; else return nextprime(floor(n)) ; end if; end proc:
    A175953 := proc(n) option remember; if n= 1 then 1; else p := procname(n-1)+(procname(n-1)+1)/4 ; return nprime(p) ; end if; end proc:
    seq(A175953(n),n=1..120) ; # R. J. Mathar, Oct 30 2010

Extensions

More terms from R. J. Mathar, Oct 30 2010

A117880 a(1) = 4; a(n) is smallest semiprime > 2*a(n-1).

Original entry on oeis.org

4, 9, 21, 46, 93, 187, 377, 755, 1513, 3027, 6059, 12127, 24257, 48529, 97059, 194127, 388257, 776515, 1553033, 3106083, 6212177, 12424355, 24848723, 49697447, 99394909, 198789819, 397579639, 795159283, 1590318573, 3180637153
Offset: 1

Views

Author

Jonathan Vos Post, May 04 2006

Keywords

Comments

a(1)=4, a(n)=2*a(n-1)+k, where k is least positive integer chosen so that a(n) is the product of two primes. Corresponding k's are 1, 3, 4, 1, 1, 3, 1, 3, 1, 5, 9, 3, 15, 1, 9, 3, 1, 3, 17, 11, 1, 13, 1, 15, 1, 1, 5, 7, 7, 11, 5, 5, 15, 1, 3, 9, 9, 5, 7, 8, ... - Zak Seidov, Dec 24 2007

Examples

			a(1)=4, then
k=1, a(2)=2*4+1=9,
k=3, a(3)=2*9+3=21,
k=4, a(4)=2*21+4=46,
k=1, a(5)=2*46+1=93,
k=1, a(6)=2*93+1=187.
		

Crossrefs

Semiprime analog of A055496.

Programs

  • Mathematica
    a=0;Do[Do[b=2a+n;If[2==Plus@@FactorInteger[b][[All,2]],Print[b];Break[]],{n,1000}];a=b,{40}] (* Zak Seidov, Dec 24 2007 *)
    ssp[n_]:=Module[{k=2n+1},While[PrimeOmega[k]!=2,k++];k]; NestList[ssp,4,30] (* Harvey P. Dale, Apr 14 2022 *)

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar
Previous Showing 21-30 of 33 results. Next