A368097 Number of non-isomorphic multiset partitions of weight n contradicting a strict version of the axiom of choice.
0, 0, 1, 3, 12, 37, 133, 433, 1516, 5209, 18555
Offset: 0
Examples
Non-isomorphic representatives of the a(2) = 1 through a(4) = 12 multiset partitions: {{1},{1}} {{1},{1,1}} {{1},{1,1,1}} {{1},{1},{1}} {{1,1},{1,1}} {{1},{2},{2}} {{1},{1},{1,1}} {{1},{1},{2,2}} {{1},{1},{2,3}} {{1},{2},{1,2}} {{1},{2},{2,2}} {{2},{2},{1,2}} {{1},{1},{1},{1}} {{1},{1},{2},{2}} {{1},{2},{2},{2}} {{1},{2},{3},{3}}
Links
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}]; mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; Table[Length[Union[brute/@Select[mpm[n], Select[Tuples[#],UnsameQ@@#&]=={}&]]], {n,0,6}]
Comments