A115567
a(n) = C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).
Original entry on oeis.org
0, 1, 3, 7, 15, 31, 63, 126, 246, 465, 847, 1485, 2509, 4095, 6475, 9948, 14892, 21777, 31179, 43795, 60459, 82159, 110055, 145498, 190050, 245505, 313911, 397593, 499177, 621615, 768211, 942648, 1149016, 1391841, 1676115, 2007327, 2391495
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372. [_Parthasarathy Nambi_, Sep 30 2009]
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720: n in [0..30]]; // G. C. Greubel, Nov 25 2017
-
seq(sum(binomial(n,k),k=1..6),n=0..36); # Zerinvary Lajos, Dec 13 2007
-
Table[n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720, {n,0,30}] (* G. C. Greubel, Nov 25 2017 *)
-
for(n=0,30, print1(n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720, ", ")) \\ G. C. Greubel, Nov 25 2017
-
[binomial(n,2)+binomial(n,4)+binomial(n,6) for n in range(1, 38)] # Zerinvary Lajos, May 17 2009
-
[binomial(n,1)+binomial(n,3)+binomial(n,5)+binomial(n,2)+binomial(n,4)+binomial(n,6) for n in range(0, 37)] # Zerinvary Lajos, May 17 2009
A134394
Triangle T(n,k) = Sum_{j=k..n} A077028(j,k), read by rows.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 9, 5, 1, 6, 15, 16, 12, 6, 1, 7, 21, 25, 22, 15, 7, 1, 8, 28, 36, 35, 28, 18, 8, 1, 9, 36, 49, 51, 45, 34, 21, 9, 1, 10, 45, 64, 70, 66, 55, 40, 24, 10, 1, 11, 55, 81, 92, 91, 81, 65, 46, 27, 11, 1, 12, 66, 100, 117, 120, 112, 96, 75, 52, 30, 12, 1, 13, 78, 121, 145, 153
Offset: 1
First few rows of the triangle:
1;
2, 1;
3, 3, 1;
4, 6, 4, 1;
5, 10, 9, 5, 1;
6, 15, 16, 12, 6, 1;
7, 21, 25, 22, 15, 7, 1;
-
A077028 := proc(n,k) if n < 0 or k<0 or k > n then 0; else k*(n-k)+1 ; end if; end proc:
A134394 := proc(n,k) add ( A077028(j,k),j=k..n) ; end proc:
seq(seq(A134394(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Apr 17 2011
A116082
a(n) = C(n,7) + C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).
Original entry on oeis.org
0, 1, 3, 7, 15, 31, 63, 127, 254, 501, 967, 1815, 3301, 5811, 9907, 16383, 26332, 41225, 63003, 94183, 137979, 198439, 280599, 390655, 536154, 726205, 971711, 1285623, 1683217, 2182395, 2804011, 3572223, 4514872, 5663889, 7055731, 8731847
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372. See Table 2 on page 370. [_Parthasarathy Nambi_, Jun 18 2009]
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
[n*(n^6-14*n^5+112*n^4-350*n^3+1099*n^2+364*n+3828)/5040: n in [0..40]]; // Vincenzo Librandi, Jun 21 2011
-
a:=n->n*(n^6-14*n^5+112*n^4-350*n^3+1099*n^2+364*n+3828)/5040: seq(a(n),n=0..35); # Emeric Deutsch, Apr 14 2006
seq(sum(binomial(n,k),k=1..7),n=0..35); # Zerinvary Lajos, Dec 14 2007
-
Table[Total[Binomial[n,Range[7]]],{n,0,40}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{0,1,3,7,15,31,63,127},41](* Harvey P. Dale, Aug 05 2011 *)
-
for(n=0,30, print1(n*(n^6 -14*n^5 +112*n^4 -350*n^3 +1099*n^2 +364*n +3828)/5040, ", ")) \\ G. C. Greubel, Nov 25 2017
A124725
Triangle read by rows: T(n,k) = binomial(n,k) + binomial(n,k+2) (0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 7, 8, 7, 4, 1, 11, 15, 15, 11, 5, 1, 16, 26, 30, 26, 16, 6, 1, 22, 42, 56, 56, 42, 22, 7, 1, 29, 64, 98, 112, 98, 64, 29, 8, 1, 37, 93, 162, 210, 210, 162, 93, 37, 9, 1, 46, 130, 255, 372, 420, 372, 255, 130, 46, 10, 1, 56, 176, 385, 627, 792, 792, 627
Offset: 0
Row 3 = (4, 4, 3, 1), then row 4 = (7, 8, 7, 4, 1).
First few rows of the triangle are
1;
1, 1;
2, 2, 1;
4, 4, 3, 1;
7, 8, 7, 4, 1;
11, 15, 15, 11, 5, 1;
16, 26, 30, 26, 16, 6, 1;
...
From _Paul Barry_, Apr 08 2011: (Start)
Production matrix begins
1, 1;
1, 1, 1;
0, 0, 1, 1;
-1, 0, 0, 1, 1;
0, 0, 0, 0, 1, 1;
1, 0, 0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 0, 1, 1;
-1, 0, 0, 0, 0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
(End)
-
T:=(n,k)->binomial(n,k)+binomial(n,k+2): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Flatten[Table[Binomial[n,k]+Binomial[n,k+2],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 12 2015 *)
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 6, 3, 1, 5, 10, 7, 3, 1, 6, 15, 14, 7, 3, 1, 7, 21, 25, 15, 7, 3, 1, 8, 28, 41, 30, 15, 7, 3, 1, 9, 36, 63, 56, 31, 15, 7, 3, 1, 10, 45, 92, 98, 62, 31, 15, 7, 3, 1
Offset: 0
First few rows of the triangle:
1;
2, 1;
3, 3, 1;
4, 6, 3, 1;
5, 10, 7, 3, 1;
6, 15, 14, 7, 3, 1;
7, 21, 25, 15, 7, 3, 1;
...
A136438
Hypertribonacci number array read by antidiagonals.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 4, 4, 0, 0, 1, 4, 7, 8, 7, 0, 0, 1, 5, 11, 15, 15, 13, 0, 0, 1, 6, 16, 26, 30, 28, 24, 0, 0, 1, 7, 22, 42, 56, 58, 52, 44, 0, 0, 1, 8, 29, 64, 98, 114, 110, 96, 81, 0, 0, 1, 9, 37, 93, 162, 212, 224, 206, 177, 149
Offset: 1
The array a(k,n) begins:
========================================
n=0..|.1.|.2.|...3.|..4.|...5.|....6.|...7..|.....8.|.....9.|....10.|
========================================
k=0..|.0.|.0.|...1.|..2.|...4.|....7.|..13..|....24.|....44.|....81.| A000073
k=1..|.0.|.0.|...2.|..4.|...8.|...15.|..28..|....52.|....96.|...177.| A008937
k=2..|.0.|.0.|...3.|..7.|..15.|...30.|..58..|...110.|...206.|...383.| A062544
k=3..|.0.|.0.|...4.|.11.|..26.|...56.|..114.|...224.|...430.|...813.|
k=4..|.0.|.0.|...5.|.16.|..42.|...98.|..212.|...436.|...866.|..1679.|
k=5..|.0.|.0.|...6.|.22.|..64.|..162.|..374.|...810.|..1676.|..3355.|
k=6..|.0.|.0.|...7.|.29.|..93.|..255.|..629.|..1439.|..3115.|..6470.|
k=7..|.0.|.0.|...8.|.37.|.130.|..385.|.1014.|..2453.|..5568.|.12038.|
k=8..|.0.|.0.|...9.|.46.|.176.|..561.|.1575.|..4028.|..9596.|.21634.|
k=9..|.0.|.0.|..10.|.56.|.232.|..793.|.2368.|..6396.|.15992.|.37626.|
k=10.|.0.|.0.|..11.|.67.|.299.|.1092.|.3460.|..9856.|.25848.|.63474.|
========================================
-
\\ create the n X n matrix of nonzero values
hypertribo(n)={ local(M=matrix(n,n)); M[1,]=Vec(1/(1-x-x^2-x^3)+O(x^n));
M[,1]=vector(n,i,1)~; for(i=2,n, for(j=2,n, M[i,j]=M[i-1,j]+M[i,j-1])); M}
{ hypertribo(10) }
Comments